Creating a System of Dual Regulation of Translation and Transcription to Enhance the Production of Recombinant Protein

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Xin Li, Peng-Wei Shi, Fei Du, Zi-Xu Zhang, Zi-Jia Li, Na Wu, Guang Yang, Wang Ma, Xiao-Man Sun
{"title":"Creating a System of Dual Regulation of Translation and Transcription to Enhance the Production of Recombinant Protein","authors":"Xin Li,&nbsp;Peng-Wei Shi,&nbsp;Fei Du,&nbsp;Zi-Xu Zhang,&nbsp;Zi-Jia Li,&nbsp;Na Wu,&nbsp;Guang Yang,&nbsp;Wang Ma,&nbsp;Xiao-Man Sun","doi":"10.1002/biot.202400679","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>When constructing cell factories, it is crucial to reallocate intracellular resources towards the synthesis of target compounds. However, imbalanced resource allocation can lead to a tradeoff between cell growth and production, reducing overall efficiency. Reliable gene expression regulation tools are needed to coordinate cell growth and production effectively. The orthogonal translation system, developed based on genetic code expansion (GCE), incorporates non-canonical amino acids (ncAAs) into proteins by assigning them to expanded codons, which enables the control of target protein expression at the translational level in an ncAA-dependent manner. However, the stringency of this regulatory tool remains inadequate. This study achieved strict translational-level control of the orthogonal translation system by addressing the abnormal leakage caused by the arabinose-inducible promoter. Further validation was conducted on the relationship between ncAA concentration and expression level, as well as the host's adaptability to the system. Subsequently, the system's applicability across multiple <i>Escherichia coli</i> hosts was verified by examining the roles of RF1 (peptide chain release factor 1) and endogenous TAG codons. By combining this strategy with inducible promoters, dual-level regulation of target gene expression at both transcriptional and translational levels was achieved and the dynamic range was further increased to over 20-fold. When using ncAA to control the expression of T7 RNA polymerase (T7 RNAP), the leakage expression was reduced by 82.7%, mitigating the low production efficiency caused by extensive leakage in the T7 system. As proof of concept, the strategy enhanced the production of alcohol dehydrogenase (ADH) by 9.82-fold, demonstrating its excellent capability in controlling gene expression in developing cell factories.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400679","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

When constructing cell factories, it is crucial to reallocate intracellular resources towards the synthesis of target compounds. However, imbalanced resource allocation can lead to a tradeoff between cell growth and production, reducing overall efficiency. Reliable gene expression regulation tools are needed to coordinate cell growth and production effectively. The orthogonal translation system, developed based on genetic code expansion (GCE), incorporates non-canonical amino acids (ncAAs) into proteins by assigning them to expanded codons, which enables the control of target protein expression at the translational level in an ncAA-dependent manner. However, the stringency of this regulatory tool remains inadequate. This study achieved strict translational-level control of the orthogonal translation system by addressing the abnormal leakage caused by the arabinose-inducible promoter. Further validation was conducted on the relationship between ncAA concentration and expression level, as well as the host's adaptability to the system. Subsequently, the system's applicability across multiple Escherichia coli hosts was verified by examining the roles of RF1 (peptide chain release factor 1) and endogenous TAG codons. By combining this strategy with inducible promoters, dual-level regulation of target gene expression at both transcriptional and translational levels was achieved and the dynamic range was further increased to over 20-fold. When using ncAA to control the expression of T7 RNA polymerase (T7 RNAP), the leakage expression was reduced by 82.7%, mitigating the low production efficiency caused by extensive leakage in the T7 system. As proof of concept, the strategy enhanced the production of alcohol dehydrogenase (ADH) by 9.82-fold, demonstrating its excellent capability in controlling gene expression in developing cell factories.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信