Immune NetworkPub Date : 2024-06-19eCollection Date: 2024-08-01DOI: 10.4110/in.2024.24.e25
Sung Hoon Jang, Joo Sung Shim, Jieun Kim, Eun Gyeol Shin, Jong Hwi Yoon, Lucy Eunju Lee, Ho-Keun Kwon, Jason Jungsik Song
{"title":"Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c<sup>+</sup> B Cells Induced by TLR9 in Lupus.","authors":"Sung Hoon Jang, Joo Sung Shim, Jieun Kim, Eun Gyeol Shin, Jong Hwi Yoon, Lucy Eunju Lee, Ho-Keun Kwon, Jason Jungsik Song","doi":"10.4110/in.2024.24.e25","DOIUrl":"10.4110/in.2024.24.e25","url":null,"abstract":"<p><p>Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c<sup>+</sup> B cells from lupus patients after <i>ex vivo</i> stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c<sup>+</sup> B cells in ODN-injected mice. Post-<i>ex vivo</i> ODN stimulation, we observed an increase in the proportion of CD11c<sup>hi</sup> cells, with elevated mitochondrial activity and CXCR4 expression in CD11c<sup>+</sup> B cells from lupus patients. <i>In vivo</i> experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11c<sup>hi</sup> B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c<sup>+</sup> B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 4","pages":"e25"},"PeriodicalIF":4.3,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-06-05eCollection Date: 2024-08-01DOI: 10.4110/in.2024.24.e24
Eun-Hyeon Shim, Sae-Hae Kim, Doo-Jin Kim, Yong-Suk Jang
{"title":"Complement C5a Receptor Signaling in Macrophages Enhances Trained Immunity Through mTOR Pathway Activation.","authors":"Eun-Hyeon Shim, Sae-Hae Kim, Doo-Jin Kim, Yong-Suk Jang","doi":"10.4110/in.2024.24.e24","DOIUrl":"10.4110/in.2024.24.e24","url":null,"abstract":"<p><p>Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing inflammatory or anti-inflammatory responses based on the type of ligand present. The Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, this research highlights a previously underappreciated aspect of C5aR signaling in trained immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for enhancing trained immunity.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 4","pages":"e24"},"PeriodicalIF":4.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-05-31eCollection Date: 2024-06-01DOI: 10.4110/in.2024.24.e23
Hyunseo Lim, Young Ho Choe, Jaeho Lee, Gi Eun Kim, Jin Won Hyun, Young-Min Hyun
{"title":"Neutrophil Migration Is Mediated by VLA-6 in the Inflamed Adipose Tissue.","authors":"Hyunseo Lim, Young Ho Choe, Jaeho Lee, Gi Eun Kim, Jin Won Hyun, Young-Min Hyun","doi":"10.4110/in.2024.24.e23","DOIUrl":"10.4110/in.2024.24.e23","url":null,"abstract":"<p><p>Adipose tissue, well known for its endocrine function, plays an immunological role in the body. The inflamed adipose tissue under LPS-induced systemic inflammation is characterized by the dominance of pro-inflammatory immune cells, particularly neutrophils. Although migration of macrophages toward damaged or dead adipocytes to form a crown-like structure in inflamed adipose tissue has been revealed, the neutrophilic interaction with adipocytes or the extracellular matrix remains unknown. Here, we demonstrated the involvement of adhesion molecules, particularly integrin α6β1, of neutrophils in adipocytes or the extracellular matrix of inflamed adipose tissue interaction. These results suggest that disrupting the adhesion between adipose tissue components and neutrophils may govern the accumulation of excessive neutrophils in inflamed tissues, a prerequisite in developing anti-inflammatory therapeutics by inhibiting inflammatory immune cells.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 3","pages":"e23"},"PeriodicalIF":4.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-05-29eCollection Date: 2024-06-01DOI: 10.4110/in.2024.24.e22
Seong Hee Jeon, Yong Sun Lee, In Jun Yeo, Hee Pom Lee, Jaesuk Yoon, Dong Ju Son, Sang-Bae Han, Jin Tae Hong
{"title":"Erratum: Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin.","authors":"Seong Hee Jeon, Yong Sun Lee, In Jun Yeo, Hee Pom Lee, Jaesuk Yoon, Dong Ju Son, Sang-Bae Han, Jin Tae Hong","doi":"10.4110/in.2024.24.e22","DOIUrl":"https://doi.org/10.4110/in.2024.24.e22","url":null,"abstract":"<p><p>[This corrects the article e22 in vol. 21, PMID: 34277112.].</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 3","pages":"e22"},"PeriodicalIF":4.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-05-29eCollection Date: 2024-06-01DOI: 10.4110/in.2024.24.e21
Dong Hyun Kim, Won-Woo Lee
{"title":"IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance.","authors":"Dong Hyun Kim, Won-Woo Lee","doi":"10.4110/in.2024.24.e21","DOIUrl":"10.4110/in.2024.24.e21","url":null,"abstract":"<p><p>IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 3","pages":"e21"},"PeriodicalIF":4.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-05-29eCollection Date: 2024-06-01DOI: 10.4110/in.2024.24.e20
Hongryeol Park, Chan Hee Lee
{"title":"The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis).","authors":"Hongryeol Park, Chan Hee Lee","doi":"10.4110/in.2024.24.e20","DOIUrl":"10.4110/in.2024.24.e20","url":null,"abstract":"<p><p>The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 3","pages":"e20"},"PeriodicalIF":4.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-05-07eCollection Date: 2024-06-01DOI: 10.4110/in.2024.24.e19
Sang-Hyun Kim, Erica Españo, Bill Thaddeus Padasas, Ju-Ho Son, Jihee Oh, Richard J Webby, Young-Ran Lee, Chan-Su Park, Jeong-Ki Kim
{"title":"Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines.","authors":"Sang-Hyun Kim, Erica Españo, Bill Thaddeus Padasas, Ju-Ho Son, Jihee Oh, Richard J Webby, Young-Ran Lee, Chan-Su Park, Jeong-Ki Kim","doi":"10.4110/in.2024.24.e19","DOIUrl":"10.4110/in.2024.24.e19","url":null,"abstract":"<p><p>The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 3","pages":"e19"},"PeriodicalIF":4.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cytokine Storm Related to CD4<sup>+</sup> T Cells in Influenza Virus-Associated Acute Necrotizing Encephalopathy.","authors":"Shushu Wang, Dongyao Wang, Xuesong Wang, Mingwu Chen, Yanshi Wang, Haoquan Zhou, Yonggang Zhou, Yong Lv, Haiming Wei","doi":"10.4110/in.2024.24.e18","DOIUrl":"10.4110/in.2024.24.e18","url":null,"abstract":"<p><p>Acute necrotizing encephalopathy (ANE) is a rare but deadly complication with an unclear pathogenesis. We aimed to elucidate the immune characteristics of H1N1 influenza virus-associated ANE (IANE) and provide a potential therapeutic approach for IANE. Seven pediatric cases from a concentrated outbreak of H1N1 influenza were included in this study. The patients' CD4<sup>+</sup> T cells from peripheral blood decreased sharply in number but highly expressed Eomesodermin (Eomes), CD69 and PD-1, companied with extremely high levels of IL-6, IL-8 in the cerebrospinal fluid and plasma. Patient 2, who showed high fever and seizures and was admitted to the hospital very early in the disease course, received intravenous tocilizumab and subsequently showed a reduction in temperature and a stable conscious state 24 h later. In conclusion, a proinflammatory cytokine storm associated with activated CD4<sup>+</sup> T cells may cause severe brain pathology in IANE. Tocilizumab may be helpful in treating IANE.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 2","pages":"e18"},"PeriodicalIF":6.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-04-29eCollection Date: 2024-04-01DOI: 10.4110/in.2024.24.e17
V Michael Holers, Rachel M Frank, Michael Zuscik, Carson Keeter, Robert I Scheinman, Christopher Striebich, Dmitri Simberg, Michael R Clay, Larry W Moreland, Nirmal K Banda
{"title":"Decay-Accelerating Factor Differentially Associates With Complement-Mediated Damage in Synovium After Meniscus Tear as Compared to Anterior Cruciate Ligament Injury.","authors":"V Michael Holers, Rachel M Frank, Michael Zuscik, Carson Keeter, Robert I Scheinman, Christopher Striebich, Dmitri Simberg, Michael R Clay, Larry W Moreland, Nirmal K Banda","doi":"10.4110/in.2024.24.e17","DOIUrl":"10.4110/in.2024.24.e17","url":null,"abstract":"<p><p>We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 2","pages":"e17"},"PeriodicalIF":6.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-04-18eCollection Date: 2024-04-01DOI: 10.4110/in.2024.24.e16
Rohit Singh
{"title":"Beyond the CAR T Cells: TIL Therapy for Solid Tumors.","authors":"Rohit Singh","doi":"10.4110/in.2024.24.e16","DOIUrl":"10.4110/in.2024.24.e16","url":null,"abstract":"","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 2","pages":"e16"},"PeriodicalIF":6.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}