Immune Network最新文献

筛选
英文 中文
Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes. 低剂量放疗通过诱导淋巴细胞和纤维母细胞样滑膜细胞凋亡减轻实验性自身免疫性关节炎的病情
IF 4.3 4区 医学
Immune Network Pub Date : 2024-08-12 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e32
Bo-Gyu Kim, Hoon Sik Choi, Yong-Ho Choe, Hyun Min Jeon, Ji Yeon Heo, Yun-Hong Cheon, Ki Mun Kang, Sang-Il Lee, Bae Kwon Jeong, Mingyo Kim
{"title":"Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes.","authors":"Bo-Gyu Kim, Hoon Sik Choi, Yong-Ho Choe, Hyun Min Jeon, Ji Yeon Heo, Yun-Hong Cheon, Ki Mun Kang, Sang-Il Lee, Bae Kwon Jeong, Mingyo Kim","doi":"10.4110/in.2024.24.e32","DOIUrl":"https://doi.org/10.4110/in.2024.24.e32","url":null,"abstract":"<p><p>Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4<sup>+</sup> T and B220<sup>+</sup> B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4<sup>+</sup> T and CD19<sup>+</sup> B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. 尿路感染期间先天性免疫反应的动态相互作用
IF 4.3 4区 医学
Immune Network Pub Date : 2024-07-22 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e31
Manisha Naskar, Hae Woong Choi
{"title":"A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection.","authors":"Manisha Naskar, Hae Woong Choi","doi":"10.4110/in.2024.24.e31","DOIUrl":"https://doi.org/10.4110/in.2024.24.e31","url":null,"abstract":"<p><p>Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. 母胎界面免疫耐受的多层机制
IF 4.3 4区 医学
Immune Network Pub Date : 2024-07-15 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e30
Jin Soo Joo, Dongeun Lee, Jun Young Hong
{"title":"Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface.","authors":"Jin Soo Joo, Dongeun Lee, Jun Young Hong","doi":"10.4110/in.2024.24.e30","DOIUrl":"https://doi.org/10.4110/in.2024.24.e30","url":null,"abstract":"<p><p>Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. NK细胞在巨细胞病毒和淋巴细胞色素膜炎病毒感染中的多方面作用
IF 4.3 4区 医学
Immune Network Pub Date : 2024-06-27 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e29
Thamer A Hamdan
{"title":"The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections.","authors":"Thamer A Hamdan","doi":"10.4110/in.2024.24.e29","DOIUrl":"https://doi.org/10.4110/in.2024.24.e29","url":null,"abstract":"<p><p>NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination. 生殖中心对 mRNA 疫苗接种的反应以及免疫印迹对后续疫苗接种的影响。
IF 4.3 4区 医学
Immune Network Pub Date : 2024-06-25 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e28
Wooseob Kim
{"title":"Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination.","authors":"Wooseob Kim","doi":"10.4110/in.2024.24.e28","DOIUrl":"https://doi.org/10.4110/in.2024.24.e28","url":null,"abstract":"<p><p>Vaccines are the most effective intervention currently available, offering protective immunity against targeted pathogens. The emergence of the coronavirus disease 2019 pandemic has prompted rapid development and deployment of lipid nanoparticle encapsulated, mRNA-based vaccines. While these vaccines have demonstrated remarkable immunogenicity, concerns persist regarding their ability to confer durable protective immunity to continuously evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This review focuses on human B cell responses induced by SARS-CoV-2 mRNA vaccination, with particular emphasis on the crucial role of germinal center reactions in shaping enduring protective immunity. Additionally, we explored observations of immunological imprinting and dynamics of recalled pre-existing immunity following variants of concern-based booster vaccination. Insights from this review contribute to comprehensive understanding B cell responses to mRNA vaccination in humans, thereby refining vaccination strategies for optimal and sustained protection against evolving coronavirus variants.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant Human IL-32θ Induces Polarization Into M1-like Macrophage in Human Monocytic Cells. 重组人 IL-32θ 可诱导人单核细胞极化为 M1 样巨噬细胞。
IF 4.3 4区 医学
Immune Network Pub Date : 2024-06-24 eCollection Date: 2024-06-01 DOI: 10.4110/in.2024.24.e27
Hyo-Min Park, Jae-Young Park, Na-Yeon Kim, Hyemoon Kim, Hong-Gyum Kim, Dong-Ju Son, Jin Tae Hong, Do-Young Yoon
{"title":"Recombinant Human IL-32θ Induces Polarization Into M1-like Macrophage in Human Monocytic Cells.","authors":"Hyo-Min Park, Jae-Young Park, Na-Yeon Kim, Hyemoon Kim, Hong-Gyum Kim, Dong-Ju Son, Jin Tae Hong, Do-Young Yoon","doi":"10.4110/in.2024.24.e27","DOIUrl":"10.4110/in.2024.24.e27","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is formed by several immune cells. Notably, tumor-associated macrophages (TAMs) are existed in the TME that induce angiogenesis, metastasis, and proliferation of cancer cells. Recently, a point-mutated variant of IL-32θ was discovered in breast cancer tissues, which suppressed migration and proliferation through intracellular pathways. Although the relationship between cancer and IL-32 has been previously studied, the effects of IL-32θ on TAMs remain elusive. Recombinant human IL-32θ (rhIL-32θ) was generated using an <i>Escherichia coli</i> expression system. To induce M0 macrophage polarization, THP-1 cells were stimulated with PMA. After PMA treatment, the cells were cultured with IL-4 and IL-13, or rhIL-32θ. The mRNA level of M1 macrophage markers (IL-1β, TNFα, inducible nitric oxide synthase) were increased by rhIL-32θ in M0 macrophages. On the other hand, the M2 macrophage markers (CCL17, CCL22, TGFβ, CD206) were decreased by rhIL-32θ in M2 macrophages. rhIL-32θ induced nuclear translocation of the NF-κB via regulation of the MAPK (p38) pathway. In conclusion, point-mutated rhIL-32θ induced the polarization to M1-like macrophages through the MAPK (p38) and NF-κB (p65/p50) pathways.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management. 探索髓系衍生抑制细胞糖酵解调节在免疫疗法和疾病管理方面的潜力
IF 4.3 4区 医学
Immune Network Pub Date : 2024-06-24 eCollection Date: 2024-06-01 DOI: 10.4110/in.2024.24.e26
Jisu Kim, Jee Yeon Choi, Hyeyoung Min, Kwang Woo Hwang
{"title":"Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management.","authors":"Jisu Kim, Jee Yeon Choi, Hyeyoung Min, Kwang Woo Hwang","doi":"10.4110/in.2024.24.e26","DOIUrl":"10.4110/in.2024.24.e26","url":null,"abstract":"<p><p>Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c+ B Cells Induced by TLR9 in Lupus. 线粒体活性和 CXCR4 协同促进红斑狼疮中由 TLR9 诱导的 CD11c+ B 细胞的分化
IF 4.3 4区 医学
Immune Network Pub Date : 2024-06-19 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e25
Sung Hoon Jang, Joo Sung Shim, Jieun Kim, Eun Gyeol Shin, Jong Hwi Yoon, Lucy Eunju Lee, Ho-Keun Kwon, Jason Jungsik Song
{"title":"Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c<sup>+</sup> B Cells Induced by TLR9 in Lupus.","authors":"Sung Hoon Jang, Joo Sung Shim, Jieun Kim, Eun Gyeol Shin, Jong Hwi Yoon, Lucy Eunju Lee, Ho-Keun Kwon, Jason Jungsik Song","doi":"10.4110/in.2024.24.e25","DOIUrl":"https://doi.org/10.4110/in.2024.24.e25","url":null,"abstract":"<p><p>Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c<sup>+</sup> B cells from lupus patients after <i>ex vivo</i> stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c<sup>+</sup> B cells in ODN-injected mice. Post-<i>ex vivo</i> ODN stimulation, we observed an increase in the proportion of CD11c<sup>hi</sup> cells, with elevated mitochondrial activity and CXCR4 expression in CD11c<sup>+</sup> B cells from lupus patients. <i>In vivo</i> experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11c<sup>hi</sup> B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c<sup>+</sup> B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complement C5a Receptor Signaling in Macrophages Enhances Trained Immunity Through mTOR Pathway Activation. 巨噬细胞中的补体 C5a 受体信号通过激活 mTOR 途径增强训练有素的免疫力
IF 4.3 4区 医学
Immune Network Pub Date : 2024-06-05 eCollection Date: 2024-08-01 DOI: 10.4110/in.2024.24.e24
Eun-Hyeon Shim, Sae-Hae Kim, Doo-Jin Kim, Yong-Suk Jang
{"title":"Complement C5a Receptor Signaling in Macrophages Enhances Trained Immunity Through mTOR Pathway Activation.","authors":"Eun-Hyeon Shim, Sae-Hae Kim, Doo-Jin Kim, Yong-Suk Jang","doi":"10.4110/in.2024.24.e24","DOIUrl":"https://doi.org/10.4110/in.2024.24.e24","url":null,"abstract":"<p><p>Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing inflammatory or anti-inflammatory responses based on the type of ligand present. The Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, this research highlights a previously underappreciated aspect of C5aR signaling in trained immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for enhancing trained immunity.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil Migration Is Mediated by VLA-6 in the Inflamed Adipose Tissue. 炎症脂肪组织中的中性粒细胞迁移是由 VLA-6 介导的
IF 4.3 4区 医学
Immune Network Pub Date : 2024-05-31 eCollection Date: 2024-06-01 DOI: 10.4110/in.2024.24.e23
Hyunseo Lim, Young Ho Choe, Jaeho Lee, Gi Eun Kim, Jin Won Hyun, Young-Min Hyun
{"title":"Neutrophil Migration Is Mediated by VLA-6 in the Inflamed Adipose Tissue.","authors":"Hyunseo Lim, Young Ho Choe, Jaeho Lee, Gi Eun Kim, Jin Won Hyun, Young-Min Hyun","doi":"10.4110/in.2024.24.e23","DOIUrl":"10.4110/in.2024.24.e23","url":null,"abstract":"<p><p>Adipose tissue, well known for its endocrine function, plays an immunological role in the body. The inflamed adipose tissue under LPS-induced systemic inflammation is characterized by the dominance of pro-inflammatory immune cells, particularly neutrophils. Although migration of macrophages toward damaged or dead adipocytes to form a crown-like structure in inflamed adipose tissue has been revealed, the neutrophilic interaction with adipocytes or the extracellular matrix remains unknown. Here, we demonstrated the involvement of adhesion molecules, particularly integrin α6β1, of neutrophils in adipocytes or the extracellular matrix of inflamed adipose tissue interaction. These results suggest that disrupting the adhesion between adipose tissue components and neutrophils may govern the accumulation of excessive neutrophils in inflamed tissues, a prerequisite in developing anti-inflammatory therapeutics by inhibiting inflammatory immune cells.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信