Immune NetworkPub Date : 2024-04-12eCollection Date: 2024-06-01DOI: 10.4110/in.2024.24.e15
Jeong Su Lee, Yun Hwan Kim, JooYeon Jhun, Hyun Sik Na, In Gyu Um, Jeong Won Choi, Jin Seok Woo, Seung Hyo Kim, Asode Ananthram Shetty, Seok Jung Kim, Mi-La Cho
{"title":"Oxidized LDL Accelerates Cartilage Destruction and Inflammatory Chondrocyte Death in Osteoarthritis by Disrupting the TFEB-Regulated Autophagy-Lysosome Pathway.","authors":"Jeong Su Lee, Yun Hwan Kim, JooYeon Jhun, Hyun Sik Na, In Gyu Um, Jeong Won Choi, Jin Seok Woo, Seung Hyo Kim, Asode Ananthram Shetty, Seok Jung Kim, Mi-La Cho","doi":"10.4110/in.2024.24.e15","DOIUrl":"10.4110/in.2024.24.e15","url":null,"abstract":"<p><p>Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 3","pages":"e15"},"PeriodicalIF":4.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-03-27eCollection Date: 2024-04-01DOI: 10.4110/in.2024.24.e14
Abraham U Morales-Primo, Ingeborg Becker, Claudia Patricia Pedraza-Zamora, Jaime Zamora-Chimal
{"title":"Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms.","authors":"Abraham U Morales-Primo, Ingeborg Becker, Claudia Patricia Pedraza-Zamora, Jaime Zamora-Chimal","doi":"10.4110/in.2024.24.e14","DOIUrl":"10.4110/in.2024.24.e14","url":null,"abstract":"<p><p>The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate <i>Leishmania</i> parasites. The orchestration of these responses is coordinated primarily by CD4<sup>+</sup> T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8<sup>+</sup> T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8<sup>+</sup> T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4<sup>+</sup> T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 2","pages":"e14"},"PeriodicalIF":6.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-26eCollection Date: 2024-02-01DOI: 10.4110/in.2024.24.e13
Seung-Woo Lee, Chong-Kil Lee
{"title":"Cytokines and Immune Disorders: Illuminating Cytokines as Hubs Within the <i>Immune Network</i>.","authors":"Seung-Woo Lee, Chong-Kil Lee","doi":"10.4110/in.2024.24.e13","DOIUrl":"10.4110/in.2024.24.e13","url":null,"abstract":"","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e13"},"PeriodicalIF":4.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-20eCollection Date: 2024-04-01DOI: 10.4110/in.2024.24.e12
Shuanglong Zhou, Jialing Huang, Yi Zhang, Hongsong Yu, Xin Wang
{"title":"Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications.","authors":"Shuanglong Zhou, Jialing Huang, Yi Zhang, Hongsong Yu, Xin Wang","doi":"10.4110/in.2024.24.e12","DOIUrl":"10.4110/in.2024.24.e12","url":null,"abstract":"<p><p>Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 2","pages":"e12"},"PeriodicalIF":6.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-16eCollection Date: 2024-02-01DOI: 10.4110/in.2024.24.e11
Hoyoung Lee, Su-Hyung Park, Eui-Cheol Shin
{"title":"IL-15 in T-Cell Responses and Immunopathogenesis.","authors":"Hoyoung Lee, Su-Hyung Park, Eui-Cheol Shin","doi":"10.4110/in.2024.24.e11","DOIUrl":"10.4110/in.2024.24.e11","url":null,"abstract":"<p><p>IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8<sup>+</sup> T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8<sup>+</sup> T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e11"},"PeriodicalIF":6.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-16eCollection Date: 2024-02-01DOI: 10.4110/in.2024.24.e10
Young Eun Lee, Seung-Hyo Lee, Wan-Uk Kim
{"title":"Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis.","authors":"Young Eun Lee, Seung-Hyo Lee, Wan-Uk Kim","doi":"10.4110/in.2024.24.e10","DOIUrl":"10.4110/in.2024.24.e10","url":null,"abstract":"<p><p>In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an \"angio-lymphokine\" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e10"},"PeriodicalIF":6.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-15eCollection Date: 2024-02-01DOI: 10.4110/in.2024.24.e9
Jung-Hyun Park, Seung-Woo Lee, Donghoon Choi, Changhyung Lee, Young Chul Sung
{"title":"Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies.","authors":"Jung-Hyun Park, Seung-Woo Lee, Donghoon Choi, Changhyung Lee, Young Chul Sung","doi":"10.4110/in.2024.24.e9","DOIUrl":"10.4110/in.2024.24.e9","url":null,"abstract":"<p><p>The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of <i>in vivo</i> IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 <i>in vivo</i>, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e9"},"PeriodicalIF":6.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-14eCollection Date: 2024-02-01DOI: 10.4110/in.2024.24.e8
Jinyong Choi, Shane Crotty, Youn Soo Choi
{"title":"Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions.","authors":"Jinyong Choi, Shane Crotty, Youn Soo Choi","doi":"10.4110/in.2024.24.e8","DOIUrl":"10.4110/in.2024.24.e8","url":null,"abstract":"<p><p>Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e8"},"PeriodicalIF":4.3,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-02-02eCollection Date: 2024-04-01DOI: 10.4110/in.2024.24.e7
Jung Ah Kim, Sung-Hee Kim, Jeong Jin Kim, Hyuna Noh, Su-Bin Lee, Haengdueng Jeong, Jiseon Kim, Donghun Jeon, Jung Seon Seo, Dain On, Suhyeon Yoon, Sang Gyu Lee, Youn Woo Lee, Hui Jeong Jang, In Ho Park, Jooyeon Oh, Sang-Hyuk Seok, Yu Jin Lee, Seung-Min Hong, Se-Hee An, Joon-Yong Bae, Jung-Ah Choi, Seo Yeon Kim, Young Been Kim, Ji-Yeon Hwang, Hyo-Jung Lee, Hong Bin Kim, Dae Gwin Jeong, Daesub Song, Manki Song, Man-Seong Park, Kang-Seuk Choi, Jun Won Park, Jun-Won Yun, Jeon-Soo Shin, Ho-Young Lee, Ho-Keun Kwon, Jun-Young Seo, Ki Taek Nam, Heon Yung Gee, Je Kyung Seong
{"title":"Immune Cells Are Differentially Affected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice.","authors":"Jung Ah Kim, Sung-Hee Kim, Jeong Jin Kim, Hyuna Noh, Su-Bin Lee, Haengdueng Jeong, Jiseon Kim, Donghun Jeon, Jung Seon Seo, Dain On, Suhyeon Yoon, Sang Gyu Lee, Youn Woo Lee, Hui Jeong Jang, In Ho Park, Jooyeon Oh, Sang-Hyuk Seok, Yu Jin Lee, Seung-Min Hong, Se-Hee An, Joon-Yong Bae, Jung-Ah Choi, Seo Yeon Kim, Young Been Kim, Ji-Yeon Hwang, Hyo-Jung Lee, Hong Bin Kim, Dae Gwin Jeong, Daesub Song, Manki Song, Man-Seong Park, Kang-Seuk Choi, Jun Won Park, Jun-Won Yun, Jeon-Soo Shin, Ho-Young Lee, Ho-Keun Kwon, Jun-Young Seo, Ki Taek Nam, Heon Yung Gee, Je Kyung Seong","doi":"10.4110/in.2024.24.e7","DOIUrl":"10.4110/in.2024.24.e7","url":null,"abstract":"<p><p>Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×10<sup>5</sup> plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×10<sup>2</sup> PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×10<sup>2</sup> PFU-virus-infected lungs from 2 dpi, but not in 1×10<sup>5</sup> PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×10<sup>5</sup> PFU; however, 1×10<sup>2</sup> PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 2","pages":"e7"},"PeriodicalIF":6.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune NetworkPub Date : 2024-01-31eCollection Date: 2024-02-01DOI: 10.4110/in.2024.24.e6
Hye Young Kim, Dongjin Jeong, Ji Hyung Kim, Doo Hyun Chung
{"title":"Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets.","authors":"Hye Young Kim, Dongjin Jeong, Ji Hyung Kim, Doo Hyun Chung","doi":"10.4110/in.2024.24.e6","DOIUrl":"10.4110/in.2024.24.e6","url":null,"abstract":"<p><p>The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e6"},"PeriodicalIF":6.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}