IEEE Transactions on NanoBioscience最新文献

筛选
英文 中文
Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching 通过多层次特征对比和匹配实现战略性多传感器数据整合
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-09-10 DOI: 10.1109/TNB.2024.3456797
Jinli Zhang;Hongwei Ren;Zongli Jiang;Zheng Chen;Ziwei Yang;Yasuko Matsubara;Yasushi Sakurai
{"title":"Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching","authors":"Jinli Zhang;Hongwei Ren;Zongli Jiang;Zheng Chen;Ziwei Yang;Yasuko Matsubara;Yasushi Sakurai","doi":"10.1109/TNB.2024.3456797","DOIUrl":"10.1109/TNB.2024.3456797","url":null,"abstract":"The analysis and comprehension of multi-omics data has emerged as a prominent topic in the field of bioinformatics and data science. However, the sparsity characteristics and high dimensionality of omics data pose difficulties in terms of extracting meaningful information. Moreover, the heterogeneity inherent in multiple omics sources makes the effective integration of multi-omics data challenging To tackle these challenges, we propose MFCC-SAtt, a multi-level feature contrast clustering model based on self-attention to extract informative features from multi-omics data. MFCC-SAtt treats each omics type as a distinct modality and employs autoencoders with self-attention for each modality to integrate and compress their respective features into a shared feature space. By utilizing a multi-level feature extraction framework along with incorporating a semantic information extractor, we mitigate optimization conflicts arising from different learning objectives. Additionally, MFCC-SAtt guides deep clustering based on multi-level features which further enhances the quality of output labels. By conducting extensive experiments on multi-omics data, we have validated the exceptional performance of MFCC-SAtt. For instance, in a pan-cancer clustering task, MFCC-SAtt achieved an accuracy of over 80.38%.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"579-590"},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Performance Evaluation of Machine Learning-Based Terahertz Metasurface Chemical Sensor 基于机器学习的太赫兹元表面化学传感器的设计与性能评估。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-09-03 DOI: 10.1109/TNB.2024.3453372
Abdullah Baz;Jacob Wekalao;Ngaira Mandela;Shobhit K. Patel
{"title":"Design and Performance Evaluation of Machine Learning-Based Terahertz Metasurface Chemical Sensor","authors":"Abdullah Baz;Jacob Wekalao;Ngaira Mandela;Shobhit K. Patel","doi":"10.1109/TNB.2024.3453372","DOIUrl":"10.1109/TNB.2024.3453372","url":null,"abstract":"This paper presents a terahertz metasurface based sensor design incorporating graphene and other plasmonic materials for highly sensitive detection of different chemicals. The proposed sensor employs the combination of multiple resonator designs - including circular and square ring resonators - to attain enhanced sensitivity among other performance parameters. Machine learning techniques like Random Forest regression, are employed to enhance the sensor design and predict its performance. The optimized sensor demonstrates excellent sensitivity of 417 GHzRIU<inline-formula> <tex-math>$^{mathbf {-{1}}}$ </tex-math></inline-formula> and a low detection limit of 0.264 RIU for ethanol and benzene detection. Furthermore, the integration of machine learning cuts down the simulation time and computational requirements by approximately 90% without compromising accuracy. The sensor’s unique design and performance characteristics, including its high-quality factor of 14.476, position it as a promising candidate for environmental monitoring and chemical sensing applications. Moreover, it also demonstrates potential for 2-bit encoding applications through strategic modulation of graphene chemical potential values. On the other hand, it also shows prospects of 2-bit encoding applications via the modulation of graphene chemical. This work provides a major advancement to the terahertz sensing application by proposing new materials, structures, and methods in computation in order to develop a high-performance chemical sensor.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"128-135"},"PeriodicalIF":3.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Representation Learning Approach for Predicting circRNA Back-Splicing Event via Sequence-Interaction-Aware Dual Encoder 通过序列交互感知双编码器预测 circRNA 回接事件的表征学习方法
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-09-03 DOI: 10.1109/TNB.2024.3454079
Chengxin He;Lei Duan;Huiru Zheng;Xinye Wang;Lili Guan;Jiaxuan Xu
{"title":"A Representation Learning Approach for Predicting circRNA Back-Splicing Event via Sequence-Interaction-Aware Dual Encoder","authors":"Chengxin He;Lei Duan;Huiru Zheng;Xinye Wang;Lili Guan;Jiaxuan Xu","doi":"10.1109/TNB.2024.3454079","DOIUrl":"10.1109/TNB.2024.3454079","url":null,"abstract":"Circular RNAs (circRNAs) play a crucial role in gene regulation and association with diseases because of their unique closed continuous loop structure, which is more stable and conserved than ordinary linear RNAs. As fundamental work to clarify their functions, a large number of computational approaches for identifying circRNA formation have been proposed. However, these methods fail to fully utilize the important characteristics of back-splicing events, i.e., the positional information of the splice sites and the interaction features of its flanking sequences, for predicting circRNAs. To this end, we hereby propose a novel approach called SIDE for predicting circRNA back-splicing events using only raw RNA sequences. Technically, SIDE employs a dual encoder to capture global and interactive features of the RNA sequence, and then a decoder designed by the contrastive learning to fuse out discriminative features improving the prediction of circRNAs formation. Empirical results on three real-world datasets show the effectiveness of SIDE. Further analysis also reveals that the effectiveness of SIDE.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"603-611"},"PeriodicalIF":3.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Heterogeneous Networks Representation With Latent Space for Synthetic Lethality Prediction 利用潜空间的多重异构网络表示法进行合成致死率预测
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-16 DOI: 10.1109/TNB.2024.3444922
Xiangjin Hu;Haoran Yi;Hao Cheng;Yijing Zhao;Dongqi Zhang;Jinxin Li;Jingjing Ruan;Jin Zhang;Xinguo Lu
{"title":"Multiple Heterogeneous Networks Representation With Latent Space for Synthetic Lethality Prediction","authors":"Xiangjin Hu;Haoran Yi;Hao Cheng;Yijing Zhao;Dongqi Zhang;Jinxin Li;Jingjing Ruan;Jin Zhang;Xinguo Lu","doi":"10.1109/TNB.2024.3444922","DOIUrl":"10.1109/TNB.2024.3444922","url":null,"abstract":"Computational synthetic lethality (SL) method has become a promising strategy to identify SL gene pairs for targeted cancer therapy and cancer medicine development. Feature representation for integrating various biological networks is crutial to improve the identification performance. However, previous feature representation, such as matrix factorization and graph neural network, projects gene features onto latent variables by keeping a specific geometric metric. There is a lack of models of gene representational latent space with considerating multiple dimentionalities correlation and preserving latent geometric structures in both sample and feature spaces. Therefore, we propose a novel method to model gene Latent Space using matrix Tri-Factorization (LSTF) to obtain gene representation with embedding variables resulting from the potential interpretation of synthetic lethality. Meanwhile, manifold subspace regularization is applied to the tri-factorization to capture the geometrical manifold structure in the latent space with gene PPI functional and GO semantic embeddings. Then, SL gene pairs are identified by the reconstruction of the associations with gene representations in the latent space. The experimental results illustrate that LSTF is superior to other state-of-the-art methods. Case study demonstrate the effectiveness of the predicted SL associations.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"564-571"},"PeriodicalIF":3.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Framework for Drug-Side Effect Associations Prediction via Counterfactual Inference-Based Data Augmentation 通过基于反事实推理的数据扩充,改进药物副作用关联预测框架。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-14 DOI: 10.1109/TNB.2024.3443244
Wenjie Yao;Ankang Wei;Zhen Xiao;Weizhong Zhao;Xianjun Shen;Xingpeng Jiang;Tingting He
{"title":"An Improved Framework for Drug-Side Effect Associations Prediction via Counterfactual Inference-Based Data Augmentation","authors":"Wenjie Yao;Ankang Wei;Zhen Xiao;Weizhong Zhao;Xianjun Shen;Xingpeng Jiang;Tingting He","doi":"10.1109/TNB.2024.3443244","DOIUrl":"10.1109/TNB.2024.3443244","url":null,"abstract":"Detecting side effects of drugs is a fundamental task in drug development. With the expansion of publicly available biomedical data, researchers have proposed many computational methods for predicting drug-side effect associations (DSAs), among which network-based methods attract wide attention in the biomedical field. However, the problem of data scarcity poses a great challenge for existing DSAs prediction models. Although several data augmentation methods have been proposed to address this issue, most of existing methods employ a random way to manipulate the original networks, which ignores the causality of existence of DSAs, leading to the poor performance on the task of DSAs prediction. In this paper, we propose a counterfactual inference-based data augmentation method for improving the performance of the task. First, we construct a heterogeneous information network (HIN) by integrating multiple biomedical data. Based on the community detection on the HIN, a counterfactual inference-based method is designed to derive augmented links, and an augmented HIN is obtained accordingly. Then, a meta-path-based graph neural network is applied to learn high-quality representations of drugs and side effects, on which the predicted DSAs are obtained. Finally, comprehensive experiments are conducted, and the results demonstrate the effectiveness of the proposed counterfactual inference-based data augmentation for the task of DSAs prediction.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"540-547"},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ontology-Based Data Collection for a Hybrid Outbreak Detection Method Using Social Media 利用社交媒体的混合疫情检测方法基于本体的数据收集。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-13 DOI: 10.1109/TNB.2024.3442912
Ghazaleh Babanejaddehaki;Aijun An;Heidar Davoudi
{"title":"Ontology-Based Data Collection for a Hybrid Outbreak Detection Method Using Social Media","authors":"Ghazaleh Babanejaddehaki;Aijun An;Heidar Davoudi","doi":"10.1109/TNB.2024.3442912","DOIUrl":"10.1109/TNB.2024.3442912","url":null,"abstract":"Given the persistent global challenge presented by rapidly spreading diseases, as evidenced notably by the widespread impact of the COVID-19 pandemic on both human health and economies worldwide, the necessity of developing effective infectious disease prediction models has become of utmost importance. In this context, the utilization of online social media platforms as valuable tools in healthcare settings has gained prominence, offering direct avenues for disseminating critical health information to the public in a timely and accessible manner. Propelled by the ubiquitous accessibility of the internet through computers and mobile devices, these platforms promise to revolutionize traditional detection methods, providing more immediate and reliable epidemiological insights. Leveraging this paradigm shift, our proposed framework harnesses Twitter data associated with infectious disease symptoms, employing ontology to identify and curate relevant tweets. Central to our methodology is a hybrid model that integrates XGBoost and Bidirectional Long Short-Term Memory (BiLSTM) architectures. The integration of XGBoost addresses the challenge of handling small dataset sizes, inherent during outbreaks due to limited time series data. XGBoost serves as a cornerstone for minimizing the loss function and identifying optimal features from our multivariate time series data. Subsequently, the combined dataset, comprising original features and predicted values by XGBoost, is channeled into the BiLSTM for further processing. Through extensive experimentation with a dataset spanning multiple infectious disease outbreaks, our hybrid model demonstrates superior predictive performance compared to state-of-the-art and baseline models. By enhancing forecasting accuracy and outbreak tracking capabilities, our model offers promising prospects for assisting health authorities in mitigating fatalities and proactively preparing for potential outbreaks.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"591-602"},"PeriodicalIF":3.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Controllability Reinforcement Learning Method for Pancreatic Cancer Biomarker Identification 胰腺癌生物标记物识别的可控性强化学习方法
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-12 DOI: 10.1109/TNB.2024.3441689
Yan Wang;Jie Hong;Yuting Lu;Nan Sheng;Yuan Fu;Lili Yang;Lingyu Meng;Lan Huang;Hao Wang
{"title":"A Controllability Reinforcement Learning Method for Pancreatic Cancer Biomarker Identification","authors":"Yan Wang;Jie Hong;Yuting Lu;Nan Sheng;Yuan Fu;Lili Yang;Lingyu Meng;Lan Huang;Hao Wang","doi":"10.1109/TNB.2024.3441689","DOIUrl":"10.1109/TNB.2024.3441689","url":null,"abstract":"Pancreatic cancer is one of the most malignant cancers with rapid progression and poor prognosis. The use of transcriptional data can be effective in finding new biomarkers for pancreatic cancer. Many network-based methods used to identify cancer biomarkers are proposed, among which the combination of network controllability appears. However, most of the existing methods do not study RNA, rely on priori and mutations information, or can only achieve classification tasks. In this study, we propose a method combined Relational Graph Convolutional Network and Deep Q-Network called RDDriver to identify pancreatic cancer biomarkers based on multi-layer heterogeneous transcriptional regulation network. Firstly, we construct a regulation network containing long non-coding RNA, microRNA, and messenger RNA. Secondly, Relational Graph Convolutional Network is used to learn the node representation. Finally, we use the idea of Deep Q-Network to build a model, which score and prioritize each RNA with the Popov-Belevitch-Hautus criterion. We train RDDriver on three small simulated networks, and calculate the average score after applying the model parameters to the regulation networks separately. To demonstrate the effectiveness of the method, we perform experiments for comparison between RDDriver and other eight methods based on the approximate benchmark of three types cancer drivers RNAs.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"556-563"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10633729","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks TC-DTA:利用变压器和卷积神经网络预测药物与目标的结合亲和力。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-12 DOI: 10.1109/TNB.2024.3441590
Xiwei Tang;Yiqiang Zhou;Mengyun Yang;Wenjun Li
{"title":"TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks","authors":"Xiwei Tang;Yiqiang Zhou;Mengyun Yang;Wenjun Li","doi":"10.1109/TNB.2024.3441590","DOIUrl":"10.1109/TNB.2024.3441590","url":null,"abstract":"Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer’s encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index (\u0000<inline-formula> <tex-math>${r}_{m}^{{2}}$ </tex-math></inline-formula>\u0000). These results highlight the effectiveness of the Transformer’s encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"572-578"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A2HTL: An Automated Hybrid Transformer-Based Learning for Predicting Survival of Esophageal Cancer Using CT Images A2HTL:利用CT图像预测食管癌存活率的基于混合变压器的自动学习方法
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-12 DOI: 10.1109/TNB.2024.3441533
Hailin Yue;Jin Liu;Lina Zhao;Hulin Kuang;Jianhong Cheng;Junjian Li;Mengshen He;Jie Gong;Jianxin Wang
{"title":"A2HTL: An Automated Hybrid Transformer-Based Learning for Predicting Survival of Esophageal Cancer Using CT Images","authors":"Hailin Yue;Jin Liu;Lina Zhao;Hulin Kuang;Jianhong Cheng;Junjian Li;Mengshen He;Jie Gong;Jianxin Wang","doi":"10.1109/TNB.2024.3441533","DOIUrl":"10.1109/TNB.2024.3441533","url":null,"abstract":"Esophageal cancer is a common malignant tumor, precisely predicting survival of esophageal cancer is crucial for personalized treatment. However, current region of interest (ROI) based methodologies not only necessitate prior medical knowledge for tumor delineation, but may also cause the model to be overly sensitive to ROI. To address these challenges, we develop an automated Hybrid Transformer based learning that integrates a Hybrid Transformer size-aware U-Net with a ranked survival prediction network to enable automatic survival prediction for esophageal cancer. Specifically, we first incorporate the Transformer with shifted windowing multi-head self-attention mechanism (SW-MSA) into the base of the U-Net encoder to capture the long-range dependency in CT images. Furthermore, to alleviate the imbalance between the ROI and the background in CT images, we devise a size-aware coefficient for the segmentation loss. Finally, we also design a ranked pair sorting loss to more comprehensively capture the ranked information inherent in CT images. We evaluate our proposed method on a dataset comprising 759 samples with esophageal cancer. Experimental results demonstrate the superior performance of our proposed method in survival prediction, even without ROI ground truth.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"548-555"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Red Blood Cells on Channel Characterization in Cylindrical Vasculature 红细胞对圆柱形血管中通道特性的影响
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-08-07 DOI: 10.1109/TNB.2024.3436022
Kathan S. Joshi;Dhaval K. Patel;Shivam Thakker;Miguel López-Benítez;Janne J. Lehtomäki
{"title":"Influence of Red Blood Cells on Channel Characterization in Cylindrical Vasculature","authors":"Kathan S. Joshi;Dhaval K. Patel;Shivam Thakker;Miguel López-Benítez;Janne J. Lehtomäki","doi":"10.1109/TNB.2024.3436022","DOIUrl":"10.1109/TNB.2024.3436022","url":null,"abstract":"Molecular communication via diffusion (MCvD) expects Brownian motions of the information molecules to transmit information. However, the signal propagation largely depends on the geometric characteristics of the assumed flow model, i.e., the characteristics of the environment, design, and position of the transmitter and receiver, respectively. These characteristics are assumed to be lucid in many ways by either consideration of one-dimensional diffusion, unbounded environment, or constant drift. In reality, diffusion often occurs in blood-vessel-like channels. To this aim, we try to study the effect of the biological environment on channel performance. The Red-Blood Cells (RBCs) found in blood vessels enforces a higher concentration of molecules towards the vessel walls, leading to better reception. Therefore, in this paper we derive an analytical expression of Channel Impulse Response (CIR) for a dispersion-advection-based regime, contemplating the influence of RBCs in the model and considering a point source transmitter and a realistic design of the receiver.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 1","pages":"113-119"},"PeriodicalIF":3.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信