Mohamed Agam;Vinod Paul;Mohamed Abdelgawad;Ghaleb A. Husseini
{"title":"Production of Targeted Estrone Liposomes Using a Herringbone Micromixer","authors":"Mohamed Agam;Vinod Paul;Mohamed Abdelgawad;Ghaleb A. Husseini","doi":"10.1109/TNB.2024.3382203","DOIUrl":"10.1109/TNB.2024.3382203","url":null,"abstract":"Liposomes are spherical vesicles formed from bilayer lipid membranes that are extensively used in targeted drug delivery as nanocarriers to deliver therapeutic reagents to specific tissues and organs in the body. Recently, we have reported using estrone as an endogenous ligand on doxorubicin-encapsulating liposomes to target estrogen receptor (ER)-positive breast cancer cells. Estrone liposomes were synthesized using the thin-film hydration method, which is a long, arduous, and multistep process. Here, we report using a herringbone micromixer to synthesize estrone liposomes in a simple and rapid manner. A solvent stream containing the lipids was mixed with a stream of phosphate buffer saline (PBS) inside a microchannel integrated with herringbone-shaped ridges that enhanced the mixing of the two streams. The small scale involved enabled rapid solvent exchange and initiated the self-assembly of the lipids to form the required liposomes. The effect of different parameters on liposome size, such as the ratio between the flow rate of the solvent and the buffer solutions (FRR), total flow rate, lipid concentrations, and solvent type, were investigated. Using this commercially available chip, we obtained liposomes with a radius of 66.1 ± 11.2 nm (mean ± standard deviation) and a polydispersity of 22% in less than 15 minutes compared to a total of \u0000<inline-formula> <tex-math>$sim $ </tex-math></inline-formula>\u000011 hours using conventional techniques. Calcein was encapsulated inside the prepared liposomes as a model drug and was released by applying ultrasound at different powers. The size of the prepared liposomes was stable over a period of one month. Overall, using microfluidics to synthesize estrone liposomes simplified the procedure considerably and improved the reproducibility of the resulting liposomes.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"472-481"},"PeriodicalIF":3.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10479533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability Analysis for Large-Scale Multi-Agent Molecular Communication Systems","authors":"Taishi Kotsuka;Yutaka Hori","doi":"10.1109/TNB.2024.3404592","DOIUrl":"10.1109/TNB.2024.3404592","url":null,"abstract":"Molecular communication (MC) is recently featured as a novel communication tool to connect individual biological nanorobots. It is expected that a large number of nanorobots can form large multi-agent MC systems through MC to accomplish complex and large-scale tasks that cannot be achieved by a single nanorobot. However, most previous models for MC systems assume a unidirectional diffusion communication channel and cannot capture the feedback between each nanorobot, which is important for multi-agent MC systems. In this paper, we introduce a system theoretic model for large-scale multi-agent MC systems using transfer functions, and then propose a method to analyze the stability for multi-agent MC systems. The proposed method decomposes the multi-agent MC system into multiple single-input and single-output (SISO) systems, which facilitates the application of simple analysis technique for SISO systems to the large-scale multi-agent MC system. Finally, we demonstrate the proposed method by analyzing the stability of a specific large-scale multi-agent MC system and clarify a parameter region to synchronize the states of nanorobots, which is important to make cooperative behaviors at a population level.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"507-517"},"PeriodicalIF":3.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monodirectional Tissue P Systems With Proteins on Cells","authors":"Bosheng Song;Chuanlong Hu;Xiangxiang Zeng","doi":"10.1109/TNB.2024.3404396","DOIUrl":"10.1109/TNB.2024.3404396","url":null,"abstract":"A variant of tissue-like P systems is known as monodirectional tissue P systems, where objects only have one direction to move between two regions. In this article, a special kind of objects named proteins are added to monodirectional tissue P systems, which can control objects moving between regions, and such computational models are named as monodirectional tissue P systems with proteins on cells (PMT P systems). We discuss the computational properties of PMT P systems. In more detail, PMT P systems employing two cells, one protein controlling a rule, and at most one object used in each symport rule are capable of achievement of Turing universality. In addition, PMT P systems using one protein controlling a rule, and at most one object used in each symport rule can effectively solve the Boolean satisfiability problem (simply \u0000<monospace>SAT</monospace>\u0000).","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"518-523"},"PeriodicalIF":3.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Won Kim;Jaeho Jeong;Hee-Youl Kwak;Jong-Seon No
{"title":"Design of DNA Storage Coding Scheme With LDPC Codes and Interleaving","authors":"Jae-Won Kim;Jaeho Jeong;Hee-Youl Kwak;Jong-Seon No","doi":"10.1109/TNB.2024.3379976","DOIUrl":"10.1109/TNB.2024.3379976","url":null,"abstract":"In this paper, we propose a new coding scheme for DNA storage using low-density parity-check (LDPC) codes and interleaving techniques. While conventional coding schemes generally employ error correcting codes in both inter and intra-oligo directions, we show that inter-oligo LDPC codes, optimized by differential evolution, are sufficient in ensuring the reliability of DNA storage due to the powerful soft decoding of LDPC codes. In addition, we apply interleaving techniques for handling non-uniform error characteristics of DNA storage to enhance the decoding performance. Consequently, the proposed coding scheme reduces the required number of oligo reads for perfect recovery by 26.25% ~ 38.5% compared to existing state-of-the-art coding schemes. Moreover, we develop an analytical DNA channel model in terms of non-uniform binary symmetric channels. This mathematical model allows us to demonstrate the superiority of the proposed coding scheme while isolating the experimental variation, as well as confirm the independent effects of LDPC codes and interleaving techniques.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"447-457"},"PeriodicalIF":3.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Ramya;K. S. Jaya Lakshmi;Khairunnisa Amreen;Sanket Goel
{"title":"Electrochemical Synthesis of Molecularly Imprinted Polymers for L-Tyrosine Detection","authors":"K. Ramya;K. S. Jaya Lakshmi;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/TNB.2024.3379588","DOIUrl":"10.1109/TNB.2024.3379588","url":null,"abstract":"L-Tyrosine (L-Tyr), a critical amino acid whose aberrant levels impact melanin and dopamine levels in human body while also increasing insulin resistance thereby increasing the risk of type 2 diabetes. The objective of this study was to detect the amount of L-Tyr in human fluids by tailored electrochemical synthesis of well adhered, homogenous and thin molecularly imprinted polymers (MIPs) by the electro-polymerization of pyrrole on glassy carbon electrode modified functionalized multi-walled carbon nanotubes. The key benefits of this procedure over previous imprinting techniques were the elimination of expensive materials like Au and tedious multi-step synthesis, for L-Tyr detection using a handheld potentiostat. The developed particles were characterized using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Chronoamperometry, and Cyclic Voltammetry. With strong reproducibility and stability, this optimized approach provides a rapid and effective method of preparing and sensing MIPs for the target analyte with a broad linear range of \u0000<inline-formula> <tex-math>$1~mu text{M}$ </tex-math></inline-formula>\u0000 to \u0000<inline-formula> <tex-math>$2000~mu text{M}$ </tex-math></inline-formula>\u0000. The Limit of Detection and Limit of Quantification were \u0000<inline-formula> <tex-math>$0.4~mu text{M}$ </tex-math></inline-formula>\u0000 and \u0000<inline-formula> <tex-math>$1.47~mu text{M}$ </tex-math></inline-formula>\u0000, respectively. The engineered sensor was validated for quantifying the concentrations of L-Tyr in human blood and serum samples, yielding satisfactory recovery and can be expanded in future to detect analytes simultaneous.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"410-417"},"PeriodicalIF":3.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Analysis and ISI Mitigation With Imperfect Transmitter in Molecular Communication","authors":"Dongliang Jing;Lin Lin;Andrew W. Eckford","doi":"10.1109/TNB.2024.3375933","DOIUrl":"10.1109/TNB.2024.3375933","url":null,"abstract":"In molecular communication (MC), molecules are released from the transmitter to convey information. This paper considers a realistic molecule shift keying (MoSK) scenario with two species of molecule in two reservoirs, where the molecules are harvested from the environment and placed into different reservoirs, which are purified by exchanging molecules between the reservoirs. This process consumes energy, and for a reasonable energy cost, the reservoirs cannot be pure; thus, our MoSK transmitter is imperfect, releasing mixtures of both molecules for every symbol, resulting in inter-symbol interference (ISI). To mitigate ISI, the properties of the receiver are analyzed and a detection method based on the ratio of different molecules is proposed. Theoretical and simulation results are provided, showing that with the increase of energy cost, the system achieves better performance. The good performance of the proposed detection scheme is also demonstrated.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"428-438"},"PeriodicalIF":3.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Tapered Fibre Optic Surface Plasmon Resonance Bio-Sensor Chip With Highly Perturbed Taper Profiles","authors":"Sanjeev Kumar Raghuwanshi","doi":"10.1109/TNB.2024.3376824","DOIUrl":"10.1109/TNB.2024.3376824","url":null,"abstract":"A numerical model based on the Transfer matrix method (TMM) is proposed for the first time to study the gold coated tapered fibre optic surface plasmon resonance (SPR) with eight different types of taper profiles namely linear, exponential-linear, Gaussian, quadratic, sinusoidal, error function type and highly perturbed taper profile so-called chirp type of profile. The performance in terms of sensitivity, full width at half maximum (FWHM), detection accuracy (D.A.), amplitude dip, and half power points are estimated with respect to tapering ratio and choices of taper profile. It is found that sensitivity increased almost linearly with the taper ratio of each taper choice for the account of the reduction of detection accuracy. It has been found that sensitivity is highest for the case of chirp taper profile and lowest for the case of quadratic taper profile at low taper ratio. In this study, the aqueous solution is considered for sensor development which is adulterated by biomolecules species like DNA, blood samples, etc.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"439-446"},"PeriodicalIF":3.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomedical Applications of Green Synthesized Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Using Aqueous Extract of Ziziphus Oxyphylla Leaves","authors":"Suliman Syed;Arshad Islam;Muhammad Shabeer;Akhtar Nadhman;Farhan Ahmad;Nadia Irfan;Shaila Mehwish;Ajmal Khan","doi":"10.1109/TNB.2024.3373777","DOIUrl":"10.1109/TNB.2024.3373777","url":null,"abstract":"Zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) were synthesized using Ziziphus oxyphylla ’s aqueous leaf extract as reducing agent. UV-Vis absorption peaks at 324 nm and 335 nm were indicative of ZnO and Mg-doped ZnO, respectively. FTIR absorption bands observed at 3238, 1043, 1400, 1401, 2186 and 2320 cm\u0000<inline-formula> <tex-math>$^{-1}$ </tex-math></inline-formula>\u0000 suggested the presence of phenols, alcohols, saturated hydrocarbons, and possibly alkynes. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy revealed pure, spherical and agglomerated NPs with average size of 35.9 nm (ZnO) and 56.8 nm (Mg-doped ZnO). Both NPs remained active against all bacterial strains with the highest inhibition zones observed against Proteus vulgaris (21.16±1.25 mm for ZnO and 24.1±0.76 mm for Mg-doped ZnO. EtBr fluorescence (cartwheel assay) indicated efflux pump blockage, suggesting its facilitation in the bacterial growth inhibition. Antioxidant potential, determined via DPPH radical scavenging assay, revealed stronger antioxidant potential for Mg-doped ZnO (IC\u0000<inline-formula> <tex-math>$_{{50}}~21.53pm 0.76~mu text{g}$ </tex-math></inline-formula>\u0000/mL) than pure ZnO (IC\u0000<inline-formula> <tex-math>$_{{50}}~30.32pm 0.73~mu text{g}$ </tex-math></inline-formula>\u0000/mL). Furthermore, both NPs showed antileishmanial activity against Leishmania tropica promastigotes (IC\u0000<inline-formula> <tex-math>$_{{50}}~47.23pm 3.22~mu text{g}$ </tex-math></inline-formula>\u0000/mL for Mg-doped ZnO and 64.34±6.56 for ZnO), while neither NP exhibited significant hemolysis, indicating biocompatibility and further assessment for their drugability.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"418-427"},"PeriodicalIF":3.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Situ Measurement of Urea Concentration With an In-Fiber SPR-MZI Sensor","authors":"Liangliang Cheng;Wanlu Zheng;Ya-Nan Zhang;Xuegang Li;Yong Zhao","doi":"10.1109/TNB.2024.3398807","DOIUrl":"10.1109/TNB.2024.3398807","url":null,"abstract":"A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability. Experimental results indicate that the designed urea sensor with temperature compensation function can detect urea solution with concentration of 1-9 mM, and the sensitivity is 1.4 nm/mM. The proposed measurement method provides a new choice for monitoring urea concentration in the field of medical diagnosis and human health monitoring.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"403-409"},"PeriodicalIF":3.7,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Target Detection Performance of a Molecular Communication Network With Multiple Mobile Nanomachines","authors":"Nithin V. Sabu;Abhishek K. Gupta","doi":"10.1109/TNB.2024.3399188","DOIUrl":"10.1109/TNB.2024.3399188","url":null,"abstract":"A network of nanomachines (NMs) can be used to build a target detection system for a variety of promising applications. They have the potential to detect toxic chemicals, infectious bacteria, and biomarkers of dangerous diseases such as cancer within the human body. Many diseases and health disorders can be detected early and efficiently treated in the future by utilizing these systems. To fully grasp the potential of these systems, mathematical analysis is required. This paper describes an analytical framework for modeling and analyzing the performance of target detection systems composed of multiple mobile nanomachines of varying sizes with passive/absorbing boundaries. We consider both direct contact detection, in which NMs must physically contact the target to detect it, and indirect sensing, in which NMs must detect the marker molecules emitted by the target. The detection performance of such systems is calculated for degradable and non-degradable targets, as well as mobile and stationary targets. The derived expressions provide various insights, such as the effect of NM density and target degradation on detection probability.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"524-536"},"PeriodicalIF":3.7,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}