Human Cell最新文献

筛选
英文 中文
TMEM97 is transcriptionally activated by YY1 and promotes colorectal cancer progression via the GSK-3β/β-catenin signaling pathway. TMEM97被YY1转录激活,并通过GSK-3β/β-catenin信号通路促进结直肠癌的进展。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-30 DOI: 10.1007/s13577-022-00759-5
Dong Mao, Xiaowei Zhang, Zhaoping Wang, Guannan Xu, Yun Zhang
{"title":"TMEM97 is transcriptionally activated by YY1 and promotes colorectal cancer progression via the GSK-3β/β-catenin signaling pathway.","authors":"Dong Mao,&nbsp;Xiaowei Zhang,&nbsp;Zhaoping Wang,&nbsp;Guannan Xu,&nbsp;Yun Zhang","doi":"10.1007/s13577-022-00759-5","DOIUrl":"https://doi.org/10.1007/s13577-022-00759-5","url":null,"abstract":"<p><p>Transmembrane protein 97 (TMEM97) is a conserved integral membrane protein highly expressed in various human cancers, including colorectal cancer (CRC), and it exhibits pro-tumor roles in breast cancer, gastric cancer, and glioma. However, whether TMEM97 participates in CRC progression is not fully understood. The expression of mRNA and protein was evaluated by real-time qPCR, western blotting, immunofluorescent, and immunohistochemical staining. TMEM97 functions in cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and transwell assays. The roles of TMEM97 in CRC cells in vivo was investigated using a subcutaneous xenograft model. The transcriptional regulation of TMEM97 was explored by luciferase reporter and ChIP assays. The silencing of TMEM97 inhibited migration and invasion of CRC cells in vitro and led to suppressed growth and enhanced apoptosis in CRC cells and xenografts, whereas overexpression of TMEM97 displayed opposite effects. Mechanistically, TMEM97 knockdown caused a reduction of the proliferating marker PCNA and an increase of pro-apoptotic proteins (cleaved caspase 8/3/7 and cleaved PARP) in CRC cells. TMEM97 also positively regulated the β-catenin signaling pathway in CRC cells and xenografts by modulating the phosphorylated-GSK-3β and active (non-phospho) β-catenin levels. Interestingly, YY1, a well-recognized oncogenic transcription factor, was identified to bind to the TMEM97 promoter and enhance its transcriptional activity, and silencing of TMEM97 abolished YY1-mediated pro-tumor effects on CRC cells. Our results suggest that TMEM97 is transcriptionally activated by YY1 and promotes CRC progression via the GSK-3β/β-catenin signaling pathway, providing that TMEM97 might be a novel therapeutic target for preventing CRC development.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1535-1546"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40650503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Long intergenic noncoding RNA LINC01287 drives the progression of cervical cancer via regulating miR-513a-5p/SERP1. 长基因间非编码RNA LINC01287通过调控miR-513a-5p/SERP1驱动宫颈癌的进展。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-27 DOI: 10.1007/s13577-022-00755-9
Yixiang Hu, Wenyou Zhang, Zheng Liu, Qichang Xing, Renzhu Liu, Qingzi Yan, Wencan Li, Xiang Liu
{"title":"Long intergenic noncoding RNA LINC01287 drives the progression of cervical cancer via regulating miR-513a-5p/SERP1.","authors":"Yixiang Hu,&nbsp;Wenyou Zhang,&nbsp;Zheng Liu,&nbsp;Qichang Xing,&nbsp;Renzhu Liu,&nbsp;Qingzi Yan,&nbsp;Wencan Li,&nbsp;Xiang Liu","doi":"10.1007/s13577-022-00755-9","DOIUrl":"https://doi.org/10.1007/s13577-022-00755-9","url":null,"abstract":"<p><p>Cervical cancer is one of the most frequent types of cancer in women, which is characterized by high invasion and metastatic tendency in its advanced stage. Emerging evidence indicated that long non-coding RNAs (LncRNAs) are involved in the pathogenesis of cervical cancer. LINC01287 has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, up until now, whether LINC01287 is associated with the initiation and development of cervical cancer remains largely unknown. In the present study, expression levels of LINC01287, miR-513a-5p and stress-associated endoplasmic reticulum protein 1 (SERP1) mRNA were quantified utilizing qRT-PCR. A series of functional experiments including CCK-8 assay, colony formation assay, transwell assay, flow cytometry, and tumor xenograft growth of cervical cancer cells were performed for studying the effects of LINC01287. The luciferase reporter assay, pull-down assay, and western blot were used to confirm the downstream targets of LINC01287 and miR-513a-5p. The results demonstrate that LINC01287 was highly expressed in cervical cancer tissue samples and cell lines. High LINC01287 predicts a poor prognosis for cervical cancer patients. Additional gain- and loss-of-function experiments demonstrated that silencing LINC01287 inhibited cervical cancer cells proliferation, colony formation, migration, apoptosis in vitro and retarded tumor growth and metastasis in vivo. Furthermore, the dual-luciferase reporter gene system and RNA pulldown assay validated that LINC01287 positively regulated SERP1 expressions by sponging miR-513a-5p, and LINC01287 inhibited cervical cancer progression by regulating miR-513a-5p/SERP1 axis. In conclusion, the current study first identified that LINC01287/miR-513a-5p/SERP1 axis played an important role in cervical cancer progression. LINC01287 might be a prognostic biomarker and a target for new therapies in patients with cervical cancer.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1577-1590"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40551502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Establishment and characterization of IPS-OGC-C1: a novel induced pluripotent stem cell line from healthy human ovarian granulosa cells. 健康人卵巢颗粒细胞诱导多能干细胞系IPS-OGC-C1的建立与表征
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-25 DOI: 10.1007/s13577-022-00757-7
Zhiqiang Wang, Xiaojia Hu, Qiufen He, Jingbo Lai, Ruolang Pan, Jing Zheng, Ye Chen
{"title":"Establishment and characterization of IPS-OGC-C1: a novel induced pluripotent stem cell line from healthy human ovarian granulosa cells.","authors":"Zhiqiang Wang,&nbsp;Xiaojia Hu,&nbsp;Qiufen He,&nbsp;Jingbo Lai,&nbsp;Ruolang Pan,&nbsp;Jing Zheng,&nbsp;Ye Chen","doi":"10.1007/s13577-022-00757-7","DOIUrl":"https://doi.org/10.1007/s13577-022-00757-7","url":null,"abstract":"<p><p>Ovarian granulosa cell (OGC) is a critical somatic component of the ovary, which provides physical support and the microenvironment required for the developing oocyte. Human OGCs are easy to obtain and culture as a by-product of follicular aspiration performed during in vitro fertilization (IVF) procedures. Therefore, OGCs offer a potent cell source to generate induced pluripotent stem cells (iPSCs). This study established a novel OGCs-derived iPSC cell line from the follicular fluid of a healthy female donor with a Chinese Han genetic background and named it IPS-OGC-C1. IPS-OGC-C1 was verified for embryonic stem cell morphology, cell marker expression, alkaline phosphatase (AP) activity, transcriptomic profile, and pluripotency capability in developing all three embryonic germ layers in vivo and in vitro.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1612-1620"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40623933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long non-coding RNA NR2F2-AS1: its expanding oncogenic roles in tumor progression. 长链非编码RNA NR2F2-AS1:其在肿瘤进展中的扩大致癌作用
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-07 DOI: 10.1007/s13577-022-00733-1
Shadi Ghorbanzadeh, Navid Poor-Ghassem, Masoomeh Afsa, Mohsen Nikbakht, Kianoosh Malekzadeh
{"title":"Long non-coding RNA NR2F2-AS1: its expanding oncogenic roles in tumor progression.","authors":"Shadi Ghorbanzadeh,&nbsp;Navid Poor-Ghassem,&nbsp;Masoomeh Afsa,&nbsp;Mohsen Nikbakht,&nbsp;Kianoosh Malekzadeh","doi":"10.1007/s13577-022-00733-1","DOIUrl":"https://doi.org/10.1007/s13577-022-00733-1","url":null,"abstract":"<p><p>Long non-coding RNA (LncRNA) is a new type of non-coding RNA whose transcription is more than 200 nucleotides in length and can be up to 100 kb. The crucial regulatory function of lncRNAs in different cellular processes is now notable in many human diseases, especially in different steps of tumorigenesis, making them clinically significant. This research tried to collect all evidence obtained so far regarding Nuclear Receptor subfamily 2 group F member 2 Antisense RNA 1 (NR2F2-AS1) to explore its role in carcinogenesis and molecular mechanism in several cancers. Collecting evidence value an oncogenic role for NR2F2-AS1, whose dysregulation changes the status for cancerous cells to gain the supremacy toward cellular proliferation, dissemination, and ultimately migration. The NR2F2-AS1 acts as competitive endogenous RNA (ceRNA) and contains several microRNA response elements (MREs) for different microRNAs involved in various pathways such as PI3K/AKT, Wnt/β-catenin, and TGF-β. This clinically makes NR2F2-AS1 a remarkable lncRNA which contributes to cancer progression and invasion and perhaps could be a candidate as a prognostic marker or even a therapeutic target.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1355-1363"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40478088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Long non-coding RNA LBX2-AS1 predicts poor survival of colon cancer patients and promotes its progression via regulating miR-627-5p/RAC1/PI3K/AKT pathway. 长链非编码RNA LBX2-AS1通过调节miR-627-5p/RAC1/PI3K/AKT通路预测结肠癌患者的不良生存,促进其进展。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-11 DOI: 10.1007/s13577-022-00745-x
Jing Fang, Junyuan Yang, Hui Chen, Wen Sun, Lingyun Xiang, Jueping Feng
{"title":"Long non-coding RNA LBX2-AS1 predicts poor survival of colon cancer patients and promotes its progression via regulating miR-627-5p/RAC1/PI3K/AKT pathway.","authors":"Jing Fang,&nbsp;Junyuan Yang,&nbsp;Hui Chen,&nbsp;Wen Sun,&nbsp;Lingyun Xiang,&nbsp;Jueping Feng","doi":"10.1007/s13577-022-00745-x","DOIUrl":"https://doi.org/10.1007/s13577-022-00745-x","url":null,"abstract":"<p><p>Colon cancer is one of the most prevalent malignant tumors across the world. Increasing studies have demonstrated that long non-coding RNAs (lncRNAs) take part in colon cancer development. Our study intends to explore the expression characteristics of LBX2-AS1, a novel lncRNA, in colon cancer and its underlying mechanisms. The results illustrated that LBX2-AS1 level was substantially increased in colon cancer tissues and was obviously correlated with the tumor volume and early distant metastasis of patients. Besides, overexpression of LBX2-AS1 remarkably boosted growth, proliferation, and metastasis and restrained apoptosis in colon cancer cells, whereas LBX2-AS1 knockdown produced the opposite effect. On the other hand, miR-627-5p, down-regulated in colon cancer tissues, was negatively associated with LBX2-AS1 expression. Functional experiments showed that miR-627-5p suppressed colon cancer growth. Mechanistically, LBX2-AS1, as an endogenous competitive RNA, targeted miR-627-5p and restrained its expression, while miR-627-5p targeted and negatively regulated the RAC1/PI3K/AKT axis. Collectively, this study has revealed that LBX2-AS1 is a poor prognostic factor of colon cancer and can regulate colon cancer progression by regulating the miR-627-5p/RAC1/PI3K/AKT pathway.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1521-1534"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40594008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Central nervous system stimulants promote nerve cell death under continuous hypoxia. 中枢神经系统兴奋剂促进持续缺氧下的神经细胞死亡。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-06-23 DOI: 10.1007/s13577-022-00734-0
Kei Ikeda-Murakami, Tomoya Ikeda, Miho Watanabe, Naoto Tani, Takaki Ishikawa
{"title":"Central nervous system stimulants promote nerve cell death under continuous hypoxia.","authors":"Kei Ikeda-Murakami,&nbsp;Tomoya Ikeda,&nbsp;Miho Watanabe,&nbsp;Naoto Tani,&nbsp;Takaki Ishikawa","doi":"10.1007/s13577-022-00734-0","DOIUrl":"https://doi.org/10.1007/s13577-022-00734-0","url":null,"abstract":"<p><p>Intake of central nervous system (CNS) stimulants causes hypoxia and brain edema, which results in nerve cell death. However, no study has yet investigated the direct and continuous effects on nerve cells of CNS stimulants under hypoxia. Thus, based on autopsy cases, the effects of CNS stimulant drugs on the CNS were examined. The pathological changes in cultured nerve cells when various CNS stimulants were added under a hypoxic condition were also investigated. Five groups (Group A, stimulants; Group B, stimulants with psychiatric drugs; Group C, caffeine; Group D, psychiatric drugs; and Group E, no drugs) according to the detected drugs in autopsy cases were compared, and brain edema was evaluated using morphological findings. Furthermore, the number of dead cultured nerve cells was counted after the addition of drugs (4-aminopyridine (4-AP), caffeine, and ephedrine) under hypoxia (3% O2). Staining with anti-receptor-interacting protein 3 (RIP3) and other associated stains was also performed to investigate the neuronal changes in the brain. Group A showed significantly more brain edema than the other groups. In the culture experiments, the ratio of nerve cell death after the addition of 4-AP was the highest in the hypoxic condition. Groups with stimulants detected were stained more strongly by RIP3 immunostaining than by other staining. Addition of stimulants to cultured nerve cells in a persistent hypoxic condition led to severe cytotoxicity and nerve cell death. These findings suggest that necroptosis is involved in nerve cell death due to the addition of CNS stimulants in the hypoxic condition.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1391-1407"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40269939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired Fanconi anemia pathway causes DNA hypomethylation in human angiosarcomas. 范可尼贫血途径受损导致人血管肉瘤DNA低甲基化。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-11 DOI: 10.1007/s13577-022-00736-y
Kangning Zhu, Suofeng Sun, Fengxia Guo, Lan Gao
{"title":"Impaired Fanconi anemia pathway causes DNA hypomethylation in human angiosarcomas.","authors":"Kangning Zhu,&nbsp;Suofeng Sun,&nbsp;Fengxia Guo,&nbsp;Lan Gao","doi":"10.1007/s13577-022-00736-y","DOIUrl":"https://doi.org/10.1007/s13577-022-00736-y","url":null,"abstract":"<p><p>Angiosarcomas (AS) is a rare soft tissue sarcomas with poor treatment options and a dismal prognosis. The abnormal DNA methylation pattern has been determined as the certain clinical relevance with different angiosarcoma subtypes. However, the profound mechanism is not clear. In present study, we studied thirty-six AS with or without chronic lymphedema, and reported that DNA damage was an important factor causing DNA methylation abnormality. Furthermore, we determined that the impaired Fanconi anemia (FA) pathway contributed to severe DNA damage in AS with chronic lymphedema. We also observed that the activated FANCD2 could facilitate DNMT1 recruitment on genomic DNA. Our study uncovers a novel regulatory mechanism of FA pathway on DNA methylation, and is a benefit to advanced understanding the pathogenesis of AS, as well as providing the potential therapeutic targets for AS treatment.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1602-1611"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40494251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Long non‑coding RNA PART1: dual role in cancer. 长链非编码RNA PART1:在癌症中的双重作用
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-21 DOI: 10.1007/s13577-022-00752-y
Rui Ran, Chao-Yang Gong, Zhi-Qiang Wang, Wen-Ming Zhou, Shun-Bai Zhang, Yong-Qiang Shi, Chun-Wei Ma, Hai-Hong Zhang
{"title":"Long non‑coding RNA PART1: dual role in cancer.","authors":"Rui Ran,&nbsp;Chao-Yang Gong,&nbsp;Zhi-Qiang Wang,&nbsp;Wen-Ming Zhou,&nbsp;Shun-Bai Zhang,&nbsp;Yong-Qiang Shi,&nbsp;Chun-Wei Ma,&nbsp;Hai-Hong Zhang","doi":"10.1007/s13577-022-00752-y","DOIUrl":"https://doi.org/10.1007/s13577-022-00752-y","url":null,"abstract":"<p><p>Increasing evidence has shown that long non-coding RNAs (lncRNAs), which are non-coding endogenous single-stranded RNAs, play an essential role in various physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Moreover, lncRNAs, as oncogenes or tumor suppressor genes, play an important role in the occurrence and development of human cancers. Prostate androgen-regulated transcript 1 (PART1) was initially identified as a carcinogenic lncRNA in prostate adenomas. The upregulated expression of PART1 plays a tumor-promoting role in liver, prostate, lung cancers, and other tumors. In contrast, the expression of PART1 is downregulated in esophageal squamous cell carcinoma, glioma, and other tumors, which may inhibit the tumor. PART1 plays a dual role in cancer and regulates cell proliferation, apoptosis, invasion, and metastasis through a variety of potential mechanisms. These findings suggest that PART1 is a promising tumor biomarker and therapeutic target. This article reviews the biological functions, related mechanisms, and potential clinical significance of PART1 in a variety of human cancers.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1364-1374"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40613371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
ARPC1A is regulated by STAT3 to inhibit ferroptosis and promote prostate cancer progression. ARPC1A受STAT3调控,抑制铁下垂,促进前列腺癌进展。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-23 DOI: 10.1007/s13577-022-00754-w
Junpeng Ji, Huibing Li, Wenjun Wang, Bo Yuan, Tianyu Shen
{"title":"ARPC1A is regulated by STAT3 to inhibit ferroptosis and promote prostate cancer progression.","authors":"Junpeng Ji,&nbsp;Huibing Li,&nbsp;Wenjun Wang,&nbsp;Bo Yuan,&nbsp;Tianyu Shen","doi":"10.1007/s13577-022-00754-w","DOIUrl":"https://doi.org/10.1007/s13577-022-00754-w","url":null,"abstract":"<p><p>The aim of this study was to investigate the biological function and molecular mechanism of ARPC1A (actin related protein 2/3 complex subunit 1A) in prostate cancer progression. RT-qPCR and IHC results showed that the level of ARPC1A in prostate cancer tissues was significantly higher than that in adjacent tissues. The results of TCGA (the cancer genome atlas) database analysis showed that high expression of ARPC1A indicates poor prognosis in prostate cancer patients. In vitro functional experiments confirmed that downregulation of ARPC1A expression resulted in decreased cell viability and invasive ability of prostate cancer cells, as ARPC1A knockdown promoted ferroptosis. The transcriptional regulation mechanism of STAT3 (signal transduction and activators of transcription 3) on ARPC1A was elucidated by Co-IP, ChIP and luciferase reporter assays. In vivo experiments also supported the in vitro results. We propose that reduced ARPC1A expression inhibits prostate cancer cell viability and invasion in a ferroptotic manner. The ARPC1A level may serve as an independent predictor of prognosis in prostate cancer patients.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1591-1601"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40547794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Long non-coding RNA tumor protein 73 antisense RNA 1 influences an interaction between lysine demethylase 5A and promoter of tumor protein 73 to enhance the malignancy of colorectal cancer. 长链非编码RNA肿瘤蛋白73反义RNA 1影响赖氨酸去甲基酶5A与肿瘤蛋白73启动子的相互作用,增强结直肠癌的恶性程度。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-27 DOI: 10.1007/s13577-022-00740-2
Zhe Huang, He Wang, Mingli Yang
{"title":"Long non-coding RNA tumor protein 73 antisense RNA 1 influences an interaction between lysine demethylase 5A and promoter of tumor protein 73 to enhance the malignancy of colorectal cancer.","authors":"Zhe Huang,&nbsp;He Wang,&nbsp;Mingli Yang","doi":"10.1007/s13577-022-00740-2","DOIUrl":"https://doi.org/10.1007/s13577-022-00740-2","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The aim of the present study was to explore the expression level of tumor protein 73 (TP73) in highly malignant CRC tumors and how the long non-coding RNA tumor protein 73 antisense RNA 1 (TP73-AS1) influences that transcription. We found that TP73-AS1 was highly expressed in malignant CRC samples in The Cancer Genome Atlas (TCGA) database. We also demonstrated TP73-AS1 was expressed in thirty samples of CRC tissues collected from China Medical University patients as well as in HCT116, RKO and SW480 CRC cell lines but not in HCoEpiC or CCD-18Co normal colon cells. Only wild-type TP73-AS1, but not any of its alternate splicing isoforms, was positively correlated with tumor malignancy. TP73-AS1 transcripts were shown to be located in cell nuclei especially in close proximity to the TP73 promoter in CRC cells, but not in normal colon cells. In addition, an interaction between lysine demethylase 5A (KDM5A) and TP73-AS1 in CRC cells, but not normal colon cells, and KDM5A localization on the TP73 promoter were influenced by TP73-AS1. Interestingly, the H3K4me3 level on the TP73 promoter was reduced, but was elevated by TP73-AS1 knockdown in CRC cells. In conclusion, these results suggest a novel epigenetic role of TP73-AS1 on histone demethylation that influences TP73 transcription, and shed light on malignancy in CRC.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1512-1520"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40649557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信