环状RNA circPBX3通过与IGF2BP2相互作用稳定ATP7A mRNA表达,促进卵巢癌细胞对顺铂的耐药。

IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-30 DOI:10.1007/s13577-022-00748-8
Lihua Fu, Dan Zhang, Nuo Yi, Yanjun Cao, Yaxian Wei, Wenjing Wang, Li Li
{"title":"环状RNA circPBX3通过与IGF2BP2相互作用稳定ATP7A mRNA表达,促进卵巢癌细胞对顺铂的耐药。","authors":"Lihua Fu,&nbsp;Dan Zhang,&nbsp;Nuo Yi,&nbsp;Yanjun Cao,&nbsp;Yaxian Wei,&nbsp;Wenjing Wang,&nbsp;Li Li","doi":"10.1007/s13577-022-00748-8","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a class of non-coding RNAs with a unique covalently closed loop structure. Recent studies indicate that dysregulation of circRNAs acts a role in cancer progression and chemotherapy resistance via interacting with RNA-binding proteins (RBPs). Herein, we identified circPBX3 to be involved in cisplatin resistance of ovarian cancer. In our study, two cisplatin-resistant ovarian cancer cell lines were established, and transcriptome RNA-sequencing was performed and circPBX3 was identified as significantly upregulated circRNA in these cells. The characteristics of circPBX3 and potential function of circPBX3 were evaluated. We found that circPBX3 was upregulated in ovarian tumor tissues and cisplatin-resistant ovarian cancer cells. CircPBX3 overexpression increased the half maximal inhibitory rate (IC<sub>50</sub>) of cisplatin, promoted colony formation and tumor xenografts growth, and reduced cell apoptosis of ovarian cancer cells under cisplatin treatment, while silencing circPBX3 showed opposite effects. Furthermore, circPBX3 could interact with the RNA-binding protein IGF2BP2, thus increased the stability of ATP7A mRNA and elevated ATP7A protein level. In addition, silencing ATP7A in ovarian cancer cells abrogated the effect of circPBX3 overexpression on cisplatin tolerance. Our findings provided a novel role of circPBX3 in cisplatin resistance of ovarian cancer.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1560-1576"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression.\",\"authors\":\"Lihua Fu,&nbsp;Dan Zhang,&nbsp;Nuo Yi,&nbsp;Yanjun Cao,&nbsp;Yaxian Wei,&nbsp;Wenjing Wang,&nbsp;Li Li\",\"doi\":\"10.1007/s13577-022-00748-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNAs (circRNAs) are a class of non-coding RNAs with a unique covalently closed loop structure. Recent studies indicate that dysregulation of circRNAs acts a role in cancer progression and chemotherapy resistance via interacting with RNA-binding proteins (RBPs). Herein, we identified circPBX3 to be involved in cisplatin resistance of ovarian cancer. In our study, two cisplatin-resistant ovarian cancer cell lines were established, and transcriptome RNA-sequencing was performed and circPBX3 was identified as significantly upregulated circRNA in these cells. The characteristics of circPBX3 and potential function of circPBX3 were evaluated. We found that circPBX3 was upregulated in ovarian tumor tissues and cisplatin-resistant ovarian cancer cells. CircPBX3 overexpression increased the half maximal inhibitory rate (IC<sub>50</sub>) of cisplatin, promoted colony formation and tumor xenografts growth, and reduced cell apoptosis of ovarian cancer cells under cisplatin treatment, while silencing circPBX3 showed opposite effects. Furthermore, circPBX3 could interact with the RNA-binding protein IGF2BP2, thus increased the stability of ATP7A mRNA and elevated ATP7A protein level. In addition, silencing ATP7A in ovarian cancer cells abrogated the effect of circPBX3 overexpression on cisplatin tolerance. Our findings provided a novel role of circPBX3 in cisplatin resistance of ovarian cancer.</p>\",\"PeriodicalId\":13228,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"35 5\",\"pages\":\"1560-1576\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-022-00748-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00748-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

环状rna (circRNAs)是一类具有独特共价闭环结构的非编码rna。最近的研究表明,circRNAs的失调通过与rna结合蛋白(rbp)的相互作用在癌症进展和化疗耐药中起作用。本文中,我们发现circPBX3参与卵巢癌顺铂耐药。在我们的研究中,我们建立了两个顺铂耐药卵巢癌细胞系,并进行了转录组rna测序,鉴定出circPBX3是这些细胞中显著上调的circRNA。评价circPBX3的特性及circPBX3的势函数。我们发现circPBX3在卵巢肿瘤组织和顺铂耐药卵巢癌细胞中表达上调。过表达CircPBX3可提高顺铂一半最大抑制率(IC50),促进肿瘤集落形成和异种移植物生长,减少顺铂治疗下卵巢癌细胞凋亡,而沉默CircPBX3则相反。此外,circPBX3可以与rna结合蛋白IGF2BP2相互作用,从而增加了ATP7A mRNA的稳定性,提高了ATP7A蛋白水平。此外,在卵巢癌细胞中沉默ATP7A可消除circPBX3过表达对顺铂耐受性的影响。我们的发现提供了circPBX3在卵巢癌顺铂耐药中的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression.

Circular RNAs (circRNAs) are a class of non-coding RNAs with a unique covalently closed loop structure. Recent studies indicate that dysregulation of circRNAs acts a role in cancer progression and chemotherapy resistance via interacting with RNA-binding proteins (RBPs). Herein, we identified circPBX3 to be involved in cisplatin resistance of ovarian cancer. In our study, two cisplatin-resistant ovarian cancer cell lines were established, and transcriptome RNA-sequencing was performed and circPBX3 was identified as significantly upregulated circRNA in these cells. The characteristics of circPBX3 and potential function of circPBX3 were evaluated. We found that circPBX3 was upregulated in ovarian tumor tissues and cisplatin-resistant ovarian cancer cells. CircPBX3 overexpression increased the half maximal inhibitory rate (IC50) of cisplatin, promoted colony formation and tumor xenografts growth, and reduced cell apoptosis of ovarian cancer cells under cisplatin treatment, while silencing circPBX3 showed opposite effects. Furthermore, circPBX3 could interact with the RNA-binding protein IGF2BP2, thus increased the stability of ATP7A mRNA and elevated ATP7A protein level. In addition, silencing ATP7A in ovarian cancer cells abrogated the effect of circPBX3 overexpression on cisplatin tolerance. Our findings provided a novel role of circPBX3 in cisplatin resistance of ovarian cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Cell
Human Cell 生物-细胞生物学
CiteScore
6.60
自引率
2.30%
发文量
176
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信