Hydrological Processes最新文献

筛选
英文 中文
Wildfire Impacts for Temperature Index Snowpack Model Parameters 野火对温度指数雪堆模型参数的影响
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-11-10 DOI: 10.1002/hyp.15334
Jeremy Giovando, Jeffrey D. Niemann, Steven R. Fassnacht
{"title":"Wildfire Impacts for Temperature Index Snowpack Model Parameters","authors":"Jeremy Giovando,&nbsp;Jeffrey D. Niemann,&nbsp;Steven R. Fassnacht","doi":"10.1002/hyp.15334","DOIUrl":"https://doi.org/10.1002/hyp.15334","url":null,"abstract":"<p>Streamflow derived from snowmelt is a key source of water for communities and agricultural producers in the western U.S. As wildfires become larger and more frequent in the West (due in part to climate change), it is increasingly important to understand their potential impacts on snowpack. Temperature-index models remain widely used to simulate snowpack in post-wildfire assessments due to their low data requirements. However, there is limited information on how the key parameters of such models change due to wildfires. The objectives of this study are to (1) quantify the observed changes in the melt-rate function and the rain-snow temperature threshold due to wildfires and (2) develop methods to adjust the melt-rate function and rain-snow temperature threshold (or Px Temperature) to simulate the potential impacts of wildfires on snowpack. To accomplish these goals, snow water equivalent data from 42 SNOTEL sites that have been impacted by wildfire are used to estimate the changes in the melt-rate functions and Px Temperatures between the pre-and post-wildfire periods. Then, general linear models (GLMs) are developed to estimate the changes in the model parameters based on readily available topographic, climatic, and land cover information. The results indicate that late season melt-rates typically increase after a wildfire for sites in northern and central ecoregions of the western U.S. Px Temperature also changes for many sites, but the direction and magnitude of change is highly variable between sites. Nearly all the GLMs can estimate the observed parameter changes better than simply using the average observed changes. However, substantial variation in the parameter values is not explained by the GLMs.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15334","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subsurface Sediment Transport in the Shallow Vadose Zone of Fine-Textured Soils With Heterogenous Preferential Flows 具有异质优先流的细粒度土壤浅层滞留带的地下沉积物迁移
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-11-10 DOI: 10.1002/hyp.15327
William Ford, Mark Williams, Rose Mumbi
{"title":"Subsurface Sediment Transport in the Shallow Vadose Zone of Fine-Textured Soils With Heterogenous Preferential Flows","authors":"William Ford,&nbsp;Mark Williams,&nbsp;Rose Mumbi","doi":"10.1002/hyp.15327","DOIUrl":"https://doi.org/10.1002/hyp.15327","url":null,"abstract":"<div>\u0000 \u0000 <p>Subsurface sediment transport in tile-drained landscapes occurs through macropores; however, little is known regarding how heterogeneous preferential flows influence fluxes. We performed laboratory rainfall simulations on 10 intact core lysimeters from a tile-drained field in Indiana, USA to study the impacts of surface and subsurface erosion on sediment leachate in heterogeneous preferential flow paths. Seven rainfall simulations were conducted to assess the impact of rainfall intensity on the leachate of surface eroded sediments (three events), and the impact of antecedent conditions on subsurface eroded sediments (four events). Cumulative sediment yield, linear mixed effects modelling, and hysteresis analyses were performed for all events. Results were presented in a series of four case studies. Results showed that surface sediment leachate concentration and yield were tightly linked to the filtration capacity of lysimeters, with more than 2/3rd of sediment originating from a single lysimeter, despite similar flow leachate volumes from each. Rainfall intensity significantly impacted the transport of surface eroded sediment at the highest intensity. Subsurface sediment erosion from undisturbed macropores was low compared to surface soils, but we found contrasting controls on sediment concentrations at low and high antecedent moistures that were equally important to sediment leachate yields. Disturbed macropores produced comparable sediment yields to surface erosion and behaved similarly to soil pipes in terms of erosion mechanics. Hysteresis results generally highlighted contrasting results for surface and subsurface sources but suggest that the prominence of slow flow, low-concentration leachate sources can alter the interpretation of results in field-scale applications. Our findings underscore an array of processes and pathways for sediment transport in the shallow vadose zone, and results will be useful for evaluating new model formulations.</p>\u0000 </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutralisation of Acid Rock Drainage by Youngest Toba Tuff Leachate Revealed by Hydrogeochemistry 水文地球化学揭示最年轻鸟羽凝灰岩沥滤液对酸性岩排水的中和作用
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-11-10 DOI: 10.1002/hyp.15335
Kannan J. Prakash, V. R. Rani, K. S. Sajinkumar
{"title":"Neutralisation of Acid Rock Drainage by Youngest Toba Tuff Leachate Revealed by Hydrogeochemistry","authors":"Kannan J. Prakash,&nbsp;V. R. Rani,&nbsp;K. S. Sajinkumar","doi":"10.1002/hyp.15335","DOIUrl":"https://doi.org/10.1002/hyp.15335","url":null,"abstract":"<div>\u0000 \u0000 <p>The Youngest Toba Tuff (YTT) supervolcanic eruption occurred 75000 years ago, and resulted in distinctive ash fall deposition in different locations encompassing marine, estuarine, lacustrine, and fluvial sedimentary basins. Of the different sedimentary basins, the YTT crypto-tephra horizon preserved in the South Kerala Sedimentary Basin (SKSB) of the western coast of India is hosted by a paleo-estuarine carbonaceous clay layer. Along the eastern margin of SKSB, confined aquifers hosting highly acidic groundwater is associated with this YTT ash and associated organic matter (OM)-rich carbonaceous clay layer, creating worse acid rock drainage (ARD), which eventually gets neutralised during summer, signalled by the crystallisation of halotrichite. Hydrogeological investigation gave insights on some of the unique geochemical processes, which facilitated the neutralisation of ARD. The main aquifers in the area include laterite and clayey-sand, which is separated by this impervious layer hosting YTT ash. Wells tapping the clayey-sand aquifer, beneath this layer, is affected by the ARD condition due to the interaction with pyrite, manifested as low pH of groundwater (3.7). Simultaneously, leaching from YTT ash, which constitutes 11.91% of Al<sub>2</sub>O<sub>3</sub>, facilitates Al content to reach groundwater in high concentration (2879.97 ppb). During dry season, when the surface of YTT-hosting OM-rich carbonaceous clay layer is exposed, the leached Al interacts with the acid derived from the YTT-hosting OM-rich carbonaceous clay layer and results in the precipitation of halotrichite. The two processes, one resulting in ARD condition and the other as formation of halotrichite, occur in succession. Thus, the crystallisation of halotrichite signals the neutralisation of water as well as heralding the potability of water.</p>\u0000 </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Soil Infiltration Rate of Alpine Meadows Using the Electrolyte Tracer Method 使用电解质示踪法评估阿尔卑斯山草甸的土壤渗透率
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-11-10 DOI: 10.1002/hyp.15321
Yunyun Ban, Chen Shi
{"title":"Assessing the Soil Infiltration Rate of Alpine Meadows Using the Electrolyte Tracer Method","authors":"Yunyun Ban,&nbsp;Chen Shi","doi":"10.1002/hyp.15321","DOIUrl":"https://doi.org/10.1002/hyp.15321","url":null,"abstract":"<div>\u0000 \u0000 <p>Grassland on the Qinghai-Tibet Plateau is highly susceptible to climate change and human activities, and vegetation degradation can affect biodiversity and soil erosion. Soil infiltration is a crucial water flow process that determines the amount of runoff and water storage capacity, and it is of great importance in maintaining biodiversity. This research investigated the effects of vegetation degradation and soil rates on soil infiltration rate and processes using the electrolyte tracer method. This technique accurately calculated soil infiltration rate by tracking continuous changes in the solute concentration change process throughout the experimental period and did not require calibration. Findings indicate that vegetation type, root mass, soil water content and soil porosity significantly affect soil infiltration rate. In particular, root mass was found to have a negative effect on soil infiltration rate. Soil moisture content initially dominated soil infiltration, but subsequently, soil porosity became increasingly influential in affecting infiltration in degraded meadow. Soil infiltration capacity varied more with vegetation type than with surface runoff. Shrub meadows had the highest infiltration rate followed by normal alpine meadows and degraded meadows, indicating the importance of vegetation on soil infiltration. The research also shows that mixed shrub and meadow can improve the ecological environment by introducing a more complex root system and increasing the infiltration rate. The electrolyte tracer method was used as an alternative to other methods that can be used in different environments than the one studied in this research.</p>\u0000 </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Storm Intensities and the Implications on Green Stormwater Infrastructure Design 探索风暴强度及其对绿色雨水基础设施设计的影响
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-11-10 DOI: 10.1002/hyp.15333
Achira Amur, Bridget Wadzuk, Robert Traver
{"title":"Exploring Storm Intensities and the Implications on Green Stormwater Infrastructure Design","authors":"Achira Amur,&nbsp;Bridget Wadzuk,&nbsp;Robert Traver","doi":"10.1002/hyp.15333","DOIUrl":"https://doi.org/10.1002/hyp.15333","url":null,"abstract":"<p>The peak intensity that occurs during a storm event can drive the performance of a green stormwater infrastructure (GSI), which may or may not align with the expected performance of the GSI. Both the peak intensity volume and where it occurs within an event are found to influence the GSI response. The design criteria set the expectation of how well a GSI will manage stormwater within a watershed. The Villanova University bioinfiltration rain garden (BRG) has been monitored since 2003, providing a long hydrological data record that is used to study local and observed rainfall patterns in comparison to design criteria to understand the impact of storm intensity on GSI performance. Intensities for all the storms recorded at the site were assessed at different timesteps and compared to the intensities typically used by the design storm approach in meeting regulatory criteria. There were 1482 storm events analysed and for all timesteps, the values commonly used for meeting design regulations were seen to be well above what was observed at the BRG, with 98% of the storms occurring below these values. Out of the 1482 storms, only 46 storms (3%) had effective durations longer than 10 h and no storm observed had an effective duration longer than 22 h, yet their peak intensities were still below the peak intensity associated with design regulations. This finding highlights the difference in the duration these sites are designed to manage (typically 24 h), in comparison to the ones experienced by the systems. The peak intensity analysis done at the different timesteps shows that for the storms recorded at the BRG, the intensities vary with changing time intervals and events. Of all the assessed events, only two events recorded larger intensities than the regionally specified NOAA C design storm, demonstrating the skewness of the approach. There was no trend in peak rain intensities over the 20-year rainfall record. This study concludes that due to their dynamic performance, vegetated GSI have a natural resilience to a variety of precipitation patterns and climate changes that may be compromised when designing to a static value set through design storms.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracing Urban Drinking Water Sources: Global State of the Art and Insights From an IAEA-Coordinated Research Project 追踪城市饮用水源:国际原子能机构(IAEA)协调研究项目的全球技术现状和启示
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-10-28 DOI: 10.1002/hyp.15312
Ricardo Sánchez-Murillo, Lucía Ortega, Polona Vreča, Klara Žagar, Suprina Shrestha, Charity Kgotlaebonywe, Germain Esquivel-Hernández, Christian Birkel, Giovanny M. Mosquera, Patricio Crespo, Darío Xaiver Zhiña, Aurel Perșoiu, Renata Feher, Arthur Ionescu, Bijay Man Shakya, Rabin Malla, Mouna Bissassa, Meriem Bellarbi, Mohamed Qurtobi, Prasanta Sanyal, Ajay Ajay, Seifu Kebede, Gabriel J. Bowen, Jean François Hélie, Daniele Pinti, Florent Barbecot, Sadhana Shrestha, Massimo Marchesi, Jared Van Rooyen, Jodie Miller
{"title":"Tracing Urban Drinking Water Sources: Global State of the Art and Insights From an IAEA-Coordinated Research Project","authors":"Ricardo Sánchez-Murillo,&nbsp;Lucía Ortega,&nbsp;Polona Vreča,&nbsp;Klara Žagar,&nbsp;Suprina Shrestha,&nbsp;Charity Kgotlaebonywe,&nbsp;Germain Esquivel-Hernández,&nbsp;Christian Birkel,&nbsp;Giovanny M. Mosquera,&nbsp;Patricio Crespo,&nbsp;Darío Xaiver Zhiña,&nbsp;Aurel Perșoiu,&nbsp;Renata Feher,&nbsp;Arthur Ionescu,&nbsp;Bijay Man Shakya,&nbsp;Rabin Malla,&nbsp;Mouna Bissassa,&nbsp;Meriem Bellarbi,&nbsp;Mohamed Qurtobi,&nbsp;Prasanta Sanyal,&nbsp;Ajay Ajay,&nbsp;Seifu Kebede,&nbsp;Gabriel J. Bowen,&nbsp;Jean François Hélie,&nbsp;Daniele Pinti,&nbsp;Florent Barbecot,&nbsp;Sadhana Shrestha,&nbsp;Massimo Marchesi,&nbsp;Jared Van Rooyen,&nbsp;Jodie Miller","doi":"10.1002/hyp.15312","DOIUrl":"https://doi.org/10.1002/hyp.15312","url":null,"abstract":"<div>\u0000 \u0000 <p>Climate change, inter-annual precipitation variability, recurrent droughts and flash flooding, coupled with increasing water needs, are shaping the co-evolution of socioeconomic and cultural assemblages, water laws and regulations, and equitable drinking water access and allocation worldwide. Recognising the need for mitigation strategies for drinking water availability in urban areas, the Isotope Hydrology Section of the International Atomic Energy Agency (IAEA) coordinated a state-of-the-art global assessment to evaluate water sources and distribution of drinking water supply in urban centres, an initiative entitled ‘Use of Isotope Techniques for the Evaluation of Water Sources for Domestic Supply in Urban Areas (2018–2023)’. Here, we report on (a) current research trends for studying urban drinking water systems during the last two decades and (b) the development, testing and integration of new methodologies, aiming for a better assessment, mapping and management of water resources used for drinking water supply in urban settings. Selected examples of water isotope applications (Canada, USA, Costa Rica, Ecuador, Morocco, Botswana, Romania, Slovenia, India and Nepal) provide context to the insights and recommendations reported and highlight the versatility of water isotopes to underpin seasonal and temporal variations across various environmental and climate scenarios. The study revealed that urban areas depend on a large spectrum of water recharge across mountain ranges, extensive local groundwater extraction and water transfer from nearby or distant river basins. The latter is reflected in the spatial isotope snapshot variability. High-resolution monitoring (hourly and sub-hourly) isotope sampling revealed large diurnal variations in the wet tropics (Costa Rica) (up to 1.5‰ in δ<sup>18</sup>O) and more uniform diurnal variations in urban centres fed by groundwater sources (0.08‰ in δ<sup>18</sup>O) (Ljubljana, Slovenia). Similarly, while <i>d</i>-excess was fairly close to the global mean value (+10‰) across all urban centres (10‰–15‰), reservoir-based drinking water systems show lower values (up to ~ −20‰) (Arlington, TX, USA and Gaborone, Botswana), as a result of strong evapoconcentration processes. δ<sup>18</sup>O time series and depth-integrated sampling highlighted the influence of the catchment damping ratio in the ultimate intake water composition. By introducing new, traceable spatial and temporal tools that span from the water source to the end-user and are linked to the engineered and socio-economic structure of the water distribution system, governmental, regional or community-based water operators and practitioners could enhance drinking water treatment strategies (including more accurate surface water blending estimations) and improve urban water management and conservation plans in the light of global warming.</p>\u0000 </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the Contributions of Riparian Vegetation and Topography to Stream Shade Using LiDAR and Conventional Digital Elevation Data 利用激光雷达和传统数字高程数据模拟河岸植被和地形对溪流遮荫的贡献
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-10-27 DOI: 10.1002/hyp.15316
B. L. Browning, R. D. Moore
{"title":"Modelling the Contributions of Riparian Vegetation and Topography to Stream Shade Using LiDAR and Conventional Digital Elevation Data","authors":"B. L. Browning,&nbsp;R. D. Moore","doi":"10.1002/hyp.15316","DOIUrl":"https://doi.org/10.1002/hyp.15316","url":null,"abstract":"<p>Stream temperature is widely considered the master variable in stream ecosystems. One of the key drivers of diel and seasonal stream temperature variability is the solar radiation received at the stream surface, which can be influenced by shading associated with both larger scale topographic features and riparian vegetation. In this study, a stream shade model was developed that uses LiDAR point cloud data to model shading by riparian vegetation, including canopy overhang, and conventional elevation data to model stream shading by topography. The model was applied to a dominantly north–south oriented river flowing in a floodplain within a mountain valley. When compared with shade interpreted from PlanetScope visual imagery, the model predicted stream shade at the point scale with 92% agreement. Sources of error were attributed to pixel and azimuth band size, which can be refined within the model arguments, although at the cost of increased processing time. The shade model was re-run after virtually rotating the reach by 90° and 270° clockwise to evaluate the effect of valley orientation. Peak reach-wide sunlight exposure occurred approximately 2 h later in the day when the stream reach was rotated 90°, and produced greater shading from mid-morning to mid-afternoon. Further work should test the model on smaller streams using ground-based oblique or drone-based photography to provide ground-truthing, particularly to assess the accuracy of predicted shade below over-hanging vegetation.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15316","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Groundwater Recharge Prediction: A Feature Selection-Based Deep Forest Model With Bayesian Optimisation 加强地下水补给预测:基于特征选择和贝叶斯优化的深林模型
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-10-27 DOI: 10.1002/hyp.15309
Bao Liu, Yaohua Sun, Lei Gao
{"title":"Enhancing Groundwater Recharge Prediction: A Feature Selection-Based Deep Forest Model With Bayesian Optimisation","authors":"Bao Liu,&nbsp;Yaohua Sun,&nbsp;Lei Gao","doi":"10.1002/hyp.15309","DOIUrl":"https://doi.org/10.1002/hyp.15309","url":null,"abstract":"<p>Accurate prediction of groundwater recharge is crucial for the sustainable management of water resources. Existing models, while effective, still have potential for improved accuracy. This study proposed a novel deep forest model—the Feature Selection-based Deep Forest model (FSDF)—for enhanced groundwater recharge prediction. This model consists of three key essential components: a feature selection layer, a cascade enhancement layer and a decision output layer, all designed to enhance the prediction accuracy of groundwater recharge rates. The feature selection layer effectively filtered out redundant features, ensuring that only relevant features are fed into the subsequent cascade enhancement layer. The cascaded enhancement layer was jointly constructed by random forests and completely random forests, processing the data layer-by-layer. Finally, the predictions of groundwater recharge rates were produced through an averaging strategy in the decision output layer. To further enhance the FSDF model's predictive capabilities, Bayesian optimization was applied for fine-tuning model hyperparameters. The model's performance was evaluated and compared with existing models using a dataset comprising of groundwater recharge rates from 1549 wells in New South Wales, Australia. The FSDF model exhibited exceptional performance, achieving a training accuracy of 95.91% and a testing accuracy of 89.65%. It outperformed the adaptive boosting, categorical boosting, extreme gradient boosting, multiple linear regression and random forests by 2.02%, 6.98%, 9.05%, 17.02% and 2.74% in prediction performance, respectively. This study contributes to both hydrological processes and groundwater management by identifying key factors such as rainfall, surface geology and PET, and refining hydrological models for greater predictive accuracy. The FSDF model offers a powerful tool for accurately forecasting groundwater recharge, outperforming traditional models. The model's adaptability makes it applicable to different geographical regions for managing water resources in the face of challenges such as water scarcity and climate change.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15309","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive, Multi-Scale Evaluation of Field Methods for Assessing Stream–Aquifer Interactions Along Channelised Lowland Streams 对河道化低洼地溪流沿岸的溪流-蓄水层相互作用实地评估方法进行全面、多尺度的评估
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-10-27 DOI: 10.1002/hyp.15311
Benjamin Ledesma, Rodrigo Villalpando-Vizcaino, Daniel Larsen, Scott Schoefernacker, Brian Waldron, Claudio Meier
{"title":"Comprehensive, Multi-Scale Evaluation of Field Methods for Assessing Stream–Aquifer Interactions Along Channelised Lowland Streams","authors":"Benjamin Ledesma,&nbsp;Rodrigo Villalpando-Vizcaino,&nbsp;Daniel Larsen,&nbsp;Scott Schoefernacker,&nbsp;Brian Waldron,&nbsp;Claudio Meier","doi":"10.1002/hyp.15311","DOIUrl":"https://doi.org/10.1002/hyp.15311","url":null,"abstract":"<div>\u0000 \u0000 <p>Stream–aquifer interactions (SAIs) play a critical role in effective groundwater management, yet their complex dynamics remain poorly understood in channelized lowland perennial streams. This study presents a multi-scale, multi-technique investigation of SAIs along two long-stream reaches in Tennessee, United States. The goal is to define a suitable methodology for characterising SAIs in this specific hydrological setting, serving as a starting point for developing a more standardised and replicable approach. The methodology includes an initial evaluation of various field techniques, followed by extensive surveys using potentiomanometers, electromagnetic induction (EMI), vertical temperature profilers (VTPs) and complementary methods such as seepage meters, bank tests and well-data analyses. Results reveal distinct hydrogeomorphic behaviours across and along the streams, challenging the SAI-homogeneity notions typically assumed in groundwater models. Nonconnah Creek exhibited streambed colmation and negligible hydraulic gradients, resulting in disconnection from the aquifer during low flows, except for a 300-m losing reach with high downward gradients. In contrast, the Loosahatchie River displayed relatively homogeneous streambed properties and small, upward hydraulic gradients, suggesting uniform SAIs along the surveyed reaches. EMI proved highly effective for mapping streambed sediments quickly, while potentiomanometers accurately measured small head differences critical for understanding SAI dynamics. VTPs were less practical due to the extended data-collection times required and their vulnerability to flooding. This study emphasises the importance of multi-scale investigations using diverse techniques to accurately characterise SAIs in lowland streams, highlighting the confounding influences of geological formations, anthropogenic alterations and depositional processes on groundwater–surface water interactions. The findings contribute to refining local water balances, informing groundwater management strategies and underscoring the need for incorporating local-scale field data into regional groundwater models. The proposed methodology serves as a foundation for developing a standardised approach for characterising SAIs in lowland channelized perennial streams, adaptable for similar stream systems worldwide.</p>\u0000 </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Variation of Changes in Extreme Discharge Seasonality Across the Northeastern United States 美国东北部极端降水季节性变化的空间差异
IF 3.2 3区 地球科学
Hydrological Processes Pub Date : 2024-10-27 DOI: 10.1002/hyp.15317
Owen H. Richardson, Carl E. Renshaw, Francis J. Magilligan
{"title":"Spatial Variation of Changes in Extreme Discharge Seasonality Across the Northeastern United States","authors":"Owen H. Richardson,&nbsp;Carl E. Renshaw,&nbsp;Francis J. Magilligan","doi":"10.1002/hyp.15317","DOIUrl":"https://doi.org/10.1002/hyp.15317","url":null,"abstract":"<div>\u0000 \u0000 <p>The Northeast United States exhibits significant spatial heterogeneity in flood seasonality, with spring snowmelt-driven floods historically dominating northern areas, while other regions show more varied flood seasonality. While it is well documented that since 1996 there has been a marked increase in extreme precipitation across this region, the response of flood seasonality to these changes in extreme precipitation and the spatial distribution of these effects remain uncertain. Here we show that, historically, snowmelt-dominated northern regions were relatively insensitive to changes in extreme precipitation. However, with climate warming, the dominance of snowmelt floods is decreasing and thus the extreme flood regimes in northern regions are increasingly susceptible to changes in extreme precipitation. While extreme precipitation increased everywhere in the Northeastern United States in 1996, it has since returned to near pre-1996 levels in the coastal north while remaining elevated in the inland north. Thus, the inland north region has and continues to experience the greatest changes in extreme flooding seasonality, including a substantial rise in floods outside the historical spring flood season, particularly in smaller watersheds. Further analysis reveals that while early winter floods are increasingly common, the magnitude of cold season floods (Nov-May) have remained unchanged over time. In contrast, warm season floods (June-Oct), historically less significant, are now increasing in both frequency and magnitude in the inland north. Our results highlight that treating the entire Northeast as a uniform hydroclimatic region conceals significant regional variations in extreme discharge trends and, more generally, climate warming will likely increase the sensitivity of historically snowmelt dominated watersheds to extreme precipitation. Understanding this spatial variability in increased extreme precipitation and increased sensitivity to extreme precipitation is crucial for enhancing disaster preparedness and refining water management strategies in affected regions.</p>\u0000 </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信