Human gene therapyPub Date : 2025-07-01Epub Date: 2025-06-04DOI: 10.1089/hum.2024.236
Chris B Russell, Christian Vettermann, Suresh Agarwal, Evan Witt, Wyatt Clark, Jeremy Arens, Raffaele Fronza, Kristin M Obrochta Moss, Theresa Kasprzyk, Tara M Robinson, Huyen Tran, Gili Kenet, Priyanka Raheja, Will Lester, Kevin Eggan, Stephen Zoog
{"title":"Recombinant Adeno-Associated Virus Integration Profiles in Nonhuman Primates and Gene Therapy Participants after Treatment with Valoctocogene Roxaparvovec.","authors":"Chris B Russell, Christian Vettermann, Suresh Agarwal, Evan Witt, Wyatt Clark, Jeremy Arens, Raffaele Fronza, Kristin M Obrochta Moss, Theresa Kasprzyk, Tara M Robinson, Huyen Tran, Gili Kenet, Priyanka Raheja, Will Lester, Kevin Eggan, Stephen Zoog","doi":"10.1089/hum.2024.236","DOIUrl":"10.1089/hum.2024.236","url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (AAVs) are clinically relevant vectors for gene therapy that persist largely as extrachromosomal episomes but also infrequently integrate into host genomes. Valoctocogene roxaparvovec is an approved AAV-based gene therapy for severe hemophilia A. We present a molecular characterization of the vector integration profiles in 5 human biopsy samples from valoctocogene roxaparvovec clinical trials as well as in samples from valoctocogene roxaparvovec-treated nonhuman primates (NHPs). The number of genomic integrations was substantially below the previously reported number of transgene-expressing cells, and integration profiles were similar between human and NHP samples. The integration profiles were polyclonal, similarly distributed across the genome, and demonstrated a small bias toward regions of open chromatin and actively transcribed genes, with no relative enrichment in cancer-associated genes. These observations were replicated between species and support the concept that preclinical assessment of AAV vector integration in NHPs is representative of outcomes in humans.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"945-955"},"PeriodicalIF":3.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144215696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autologous Production: The Future of Sustainable Antibody Treatments.","authors":"Steevens Bouaziz, Florence Rouleux-Bonnin, Stéphanie David, Guillermo Carvajal Alegria, Florence Velge-Roussel","doi":"10.1089/hum.2025.052","DOIUrl":"https://doi.org/10.1089/hum.2025.052","url":null,"abstract":"<p><p>Antibody gene transfer offers a promising solution to the high cost and frequent administration of monoclonal antibodies (mAbs), enabling the body to produce its own drugs economically and sustainably. This review addresses the challenges faced by antibody therapies, including economic and environmental impacts, as well as patient-related issues such as efficacy and tolerance. We propose that direct <i>in vivo</i> protein production, or autologous production, via plasmid DNA (pDNA) injection may address some of these challenges. This pDNA-based strategy provides a cost-effective alternative while maintaining flexibility and adaptability for various proteins, making it suitable for a wide range of pathological contexts. Additionally, gene therapy with plasmids could reduce the need for frequent injections, improving patient compliance. In this review, we provide an overview of the pioneering studies that introduced the use of pDNA for <i>in vivo</i> protein production. We focus on key factors for successful autologous production, such as plasmid design, vectorization, and methods of administration. Finally, we explore various applications where autologous production could serve as a promising alternative for therapeutic antibody treatments.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The β-Hemoglobinopathies as a Model for the Development of Nonviral, Episomal Vectors for Gene Therapy.","authors":"Aglaia Athanassiadou, Argyro Sgourou, Meletios Verras","doi":"10.1089/hum.2025.034","DOIUrl":"https://doi.org/10.1089/hum.2025.034","url":null,"abstract":"<p><p>The study of β-hemoglobinopathies and associated β-globin genes has revealed that genetic elements, such as the Locus Control Region (LCR) or the replication Initiation Region (IR) of the β-globin gene locus, are essential for the regulation of β-globin genes replication and expression. The LCR at 5' of the β-globin genes plays major role in the intricate regulation of transcription of the \"β-like globin genes\" expression <i>in situ</i> and in gene therapy protocols by viral gene transfer, ensuring globin gene expression independent from integration site and exerting a critical role in chromatin organization and boundary formation. The IR element, located at the 5' site of the <i>HBB</i> gene promoter, functions as the initiation point for physiological, bidirectional DNA replication, both <i>in situ</i> and within an episomal vector, and induces replication in positions that do not possess such capacity. It enhances plasmid replication, establishment, and transgene expression in the descendants of transfected human CD34+ cells during colony-forming cell assays. A third required genetic element is the promoter of the transgene(s). This is either the <i>HBB</i> gene native promoter or the CD34+ cell-functional ubiquitous promoter spleen focus-forming virus. Both promoters, in <i>in vitro</i> studies, can direct accurate, efficient transcription from episomal, S/MAR-based vectors. Mutations in the <i>HBB</i> gene native promoter as well as in LCR and IR lead to β-thalassemia. Another genetic element, the S/MAR, deriving from the 5' of the human β-interferon gene, ensures plasmid nonintegration and long-term nuclear retention in the prototype episomal vector pEPI-1 and derivative episomal vectors. Such S/MAR-based episomal vectors form the basis from which the genetic elements collectively- <i>HBB gene</i> promoter, LCR, and IR-represent a comprehensive model for the design of efficient episomal vectors with efficient transcription, replication, and long-term nuclear retention of vector for gene therapy applications for the β-hemoglobinopathies within the context of <i>gene addition</i> strategy.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"10-Month-Old Boy Makes History as World's First Patient Treated with Personalized CRISPR Therapy.","authors":"Alex Philippidis","doi":"10.1089/hum.2025.124","DOIUrl":"https://doi.org/10.1089/hum.2025.124","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144474979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress Toward a Cure for All Patients with Cystic Fibrosis: An Interview with Patrick Thibodeau, PhD.","authors":"","doi":"10.1089/hum.2025.105","DOIUrl":"https://doi.org/10.1089/hum.2025.105","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Trundle, Alexis Boulinguiez, Ngoc Lu-Nguyen, James March, Alberto Malerba, Linda Popplewell
{"title":"Periostin Exon 17 Skipping Enhances the Efficacy of Local Adeno-Associated Viral-Microdystrophin Administration in a Fibrotic Model of Duchenne Muscular Dystrophy.","authors":"Jessica Trundle, Alexis Boulinguiez, Ngoc Lu-Nguyen, James March, Alberto Malerba, Linda Popplewell","doi":"10.1089/hum.2024.256","DOIUrl":"https://doi.org/10.1089/hum.2024.256","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe, progressive genetic disorder primarily affecting boys, characterized by muscle degeneration due to mutations in the DMD gene encoding dystrophin, a crucial protein for muscle fiber integrity. The disease leads to significant muscle weakness and eventually to loss of ambulation. Adeno-associated viral (AAV)-microdystrophin (MD) gene therapy shows promise in preclinical and clinical settings. However, muscle fibrosis, a consequence of chronic inflammation and extracellular matrix remodeling, exacerbates disease progression and may hinder therapeutic efficacy. Periostin, a matricellular protein involved in fibrosis, is upregulated in DMD rodent models and correlates with collagen deposition. We previously developed an antisense oligonucleotide strategy to induce exon 17 skipping and so reduce periostin expression and collagen accumulation in the fibrotic D2.<i>mdx</i> mouse model of DMD. Here, we investigated the combined effects of periostin modulation and AAV-MD1 treatment. We found that systemic periostin splicing modulation significantly improved muscle function, assessed by forelimb grip strength and treadmill performance. Importantly, periostin exon skipping increased the MD protein expression. These findings suggest that targeting periostin in conjunction with MD therapy could represent a valid therapeutic strategy for DMD.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144215695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Limitation of Assay Sensitivity Revealed by the Improvement of Cell-Based Assay Against Various Adeno-Associated Virus Serotypes.","authors":"Ryota Watano, Kenji Ohba, Yoshihide Sehara, Yuka Hayashi, Yasushi Saga, Masashi Urabe, Tsukasa Ohmori, Hiroaki Mizukami","doi":"10.1089/hum.2024.261","DOIUrl":"10.1089/hum.2024.261","url":null,"abstract":"<p><p>Gene therapy using adeno-associated virus (AAV) vectors is currently expanding to broad clinical applications. As the presence of a neutralizing antibody (NAb) against AAV capsids significantly restrains their efficacy, an accurate evaluation of NAb status is crucial for selecting appropriate candidates for gene therapy. Notably, cell-based NAb assays may not be sufficiently sensitive for detecting low-titer NAb, and few assays can evaluate multiple AAV serotypes using a commonly available cell. In this study, we developed a sensitive NAb assay against various AAV serotypes using commonly available HEK293 and Huh-7 cells. We found that adding glucose efficiently enhanced transgene expression across various AAV serotypes without causing cell damage. In addition, by combining a highly sensitive reporter gene, NanoLuc, the necessary dose of AAV vector was significantly reduced. The reduction of AAV dose resulted in the increased sensitivity of NAb detection as low as 100 vector genomes/cell. At the lower vector doses, sensitivity improvement was not observed regardless of serotypes, suggesting the limit of assay sensitivity of the cell-based NAb assay. These findings provide a highly sensitive methodology for assessing NAb titers and offer insights into conditions to attain maximal sensitivity in the cell-based NAb assay.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"914-924"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human gene therapyPub Date : 2025-06-01Epub Date: 2025-05-09DOI: 10.1089/hum.2024.254
Lin Fang, Xueyan Wang, Yi Zhang, Chen Zhang, Xiaoxiao Liu, Wanjing Li, Yuxin Zhang, Nan Sun, Junnian Zheng, Gang Wang
{"title":"Oncolytic Adenovirus Armoring with <i>CXCL9</i> and <i>IL15</i> Shows Potent Antitumor Activity and Boosts CAR-T Therapy for Prostate Cancer.","authors":"Lin Fang, Xueyan Wang, Yi Zhang, Chen Zhang, Xiaoxiao Liu, Wanjing Li, Yuxin Zhang, Nan Sun, Junnian Zheng, Gang Wang","doi":"10.1089/hum.2024.254","DOIUrl":"10.1089/hum.2024.254","url":null,"abstract":"<p><p>Chimeric antigen receptor T cell (CAR-T) therapy has achieved great success and progress for treatment of hematological malignancy, but it still cannot overcome the obstacles in solid tumors. The hostile tumor microenvironment (TME), such as dense extracellular matrix, hypoxia, low pH, and tumor-derived metabolites, largely impedes CAR-T function. Oncolytic virus, as a form of immunotherapy, provides a way to antagonize the TME and improve the efficacy of CAR-T cells in solid tumors. In this study, the chemokine <i>CXCL9</i> and interleukin 15 (<i>IL15</i>) genes were genetically integrated into adenoviral vector to construct oncolytic adenovirus (OAV) Ad-CXCL9-IL15, which could infect tumor cells to express and secrete CXCL9 and IL15. Ad-CXCL9-IL15 showed potent antitumor activity in xenografted prostate cancer model and augmented the tumor infiltration of CD45<sup>+</sup>CD3<sup>+</sup> T and CD8<sup>+</sup> T cells in immunocompetent mice. Moreover, Ad-CXCL9-IL15 treatment decreased Treg cells in tumor mass and increased CD44<sup>+</sup>CD62L<sup>+</sup> T cells in spleen. Indicating that Ad-CXCL9-IL15 modified the TME and augmented antitumor immune responses <i>in vivo</i>. Furthermore, administration of Ad-CXCL9-IL15 dramatically promoted infiltration and survival of B7H3-targeting CAR-T cells, improved the therapeutic efficacy, and prolonged the survival time of prostate cancer-bearing mice. Therefore, cytokine-armored OAV Ad-CXCL9-IL15 could be used as a bioenhancer to modify TME and boost immunotherapy for solid tumors.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"884-901"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143998268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human gene therapyPub Date : 2025-06-01Epub Date: 2025-05-07DOI: 10.1089/hum.2025.075
Alex Philippidis
{"title":"Marks' Resignation Sparks Concerns on FDA Regulation of Gene Therapies.","authors":"Alex Philippidis","doi":"10.1089/hum.2025.075","DOIUrl":"10.1089/hum.2025.075","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"851-855"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144012119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human gene therapyPub Date : 2025-06-01Epub Date: 2025-05-16DOI: 10.1089/hum.2024.162
Xiang Li, Qikun Yu, Hua Bi, Dening Pei, Da Zhang, Wei Jiang, Xiaodong Ye, Zhenzhen Cai, Wenxiu Hou, Akash Bhattacharya, Yichen Yang, Cong Wang, Miao Ye, Xi Qin, Dehua Huo, Chenggang Liang
{"title":"A Single-Sector Higher Throughput Sedimentation Velocity Analytical Ultracentrifugation Method for Recombinant Adeno-Associated Virus Empty and Full Ratio Analysis.","authors":"Xiang Li, Qikun Yu, Hua Bi, Dening Pei, Da Zhang, Wei Jiang, Xiaodong Ye, Zhenzhen Cai, Wenxiu Hou, Akash Bhattacharya, Yichen Yang, Cong Wang, Miao Ye, Xi Qin, Dehua Huo, Chenggang Liang","doi":"10.1089/hum.2024.162","DOIUrl":"10.1089/hum.2024.162","url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) has emerged as one of the most important gene delivery vectors in the field of gene therapy due to its unique advantages and characteristics. The empty and full ratio is a critical quality attribute in the quality control (QC) of rAAV, and its accurate evaluation is crucial for ensuring the safety, effectiveness, and consistency of gene therapy products. Analytical ultracentrifugation (AUC) technology, with its high resolution and accuracy, is widely recognized by the industry as the gold standard for identifying the empty and full ratio of rAAV. However, the conventional sedimentation velocity analytical ultracentrifugation (SV-AUC) method has limited throughput, failing to meet the large-scale detection needs of rAAV in process development and QC. This study aims to develop a single-sector higher throughput SV-AUC method without the need for a reference sector for blank control in order to improve the throughput of detecting the empty and full ratio of rAAV vectors. We optimized the traditional double-sector SV-AUC method, which requires a reference sector for blank control in the cell. By converting the light intensity data of AUC into pseudo-absorbance data, we significantly improve the analytical throughput. By tracking the variation of light intensity data with radius, we could clearly observe the sedimentation process of the rAAV sample. Despite a difference in the absolute value of pseudo-absorbance, the accurately fitted relative absorbance value and the traditional SV-AUC absorbance value with blank control were comparable, further verifying the applicability of this upgraded rAAV analytical method. The detailed comparison and verification between the upgraded method and the traditional SV-AUC method showed that the consistency and repeatability of the percentage and sedimentation coefficient were excellent both within the same cell and across different cells. The analysis results of samples from seven independent cells with a total of 14 sectors showed that the overall data exhibited good repeatability. The consistency of the high percentage empty capsid (HE) samples repeatability results was good, and the overlay of the C(s) distribution diagram also showed good pattern consistency. The relative standard deviation of the average percentage of empty, partial, and full capsids was maintained within 5%. The upgraded method demonstrated excellent consistency and repeatability in the analysis of rAAV samples with different empty and full ratios, aligning closely with the data obtained with the traditional SV-AUC method, the gold standard. Linear correlation analysis between the titers of HE samples and the overall absorbance (A value) of AUC, as well as the absorbance of empty, partial, and full capsids, revealed a good linear relationship, further confirming the applicability and reliability of the upgraded AUC method for evaluating rAAV samples with different titers. We also preliminarily e","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"925-936"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144077363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}