{"title":"针对肌萎缩侧索硬化症的基因治疗:从沉默基因到增强神经保护。","authors":"Sergi Verdés, Xavier Navarro, Assumpció Bosch","doi":"10.1177/10430342251372898","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapy is emerging as a transformative approach for treating amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disease. While gene replacement has shown a groundbreaking success in spinal muscular atrophy, the complexity of ALS-due to frequent gain-of-function mutations and a heterogeneous etiology-presents significant challenges. Importantly, approximately 90% of ALS cases are sporadic, with unknown genetic mutation, further complicating patient stratification and therapeutic targeting. As a result, gene therapy strategies must often address multiple pathological mechanisms simultaneously. So far, current gene therapy strategies aim to either suppress toxic gene expression or promote neuroprotection, predominantly via viral-mediated delivery systems. This review will provide an overview of emerging preclinical and clinical gene therapy approaches for ALS, focusing on two main strategies: gene silencing and neuroprotection. Gene silencing techniques, including antisense oligonucleotides (ASOs), viral-mediated RNA interference, and gene editing, have demonstrated efficacy in reducing mutant gene expression, particularly in SOD1 and C9orf72 models, although clinical translation has so far yielded limited success. The recent Food and Drug Administration's approval of the ASO therapy Qalsody for SOD1-ALS underscores the clinical potential of these approaches. Neuroprotective strategies aim to enhance motor neuron survival through delivery of trophic factors, often targeting both central and peripheral tissues to harness retrograde transport mechanisms. We will discuss the advantages and limitations of various delivery vectors, targeting specificity, timing of intervention, and translational challenges, alongside current clinical trial data. This review aims to synthesize how these approaches may converge to address the multifaceted nature of ALS and guide the development of next-generation therapeutics.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"1173-1198"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting Amyotrophic Lateral Sclerosis with Gene Therapy: From Silencing Genes to Enhancing Neuroprotection.\",\"authors\":\"Sergi Verdés, Xavier Navarro, Assumpció Bosch\",\"doi\":\"10.1177/10430342251372898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene therapy is emerging as a transformative approach for treating amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disease. While gene replacement has shown a groundbreaking success in spinal muscular atrophy, the complexity of ALS-due to frequent gain-of-function mutations and a heterogeneous etiology-presents significant challenges. Importantly, approximately 90% of ALS cases are sporadic, with unknown genetic mutation, further complicating patient stratification and therapeutic targeting. As a result, gene therapy strategies must often address multiple pathological mechanisms simultaneously. So far, current gene therapy strategies aim to either suppress toxic gene expression or promote neuroprotection, predominantly via viral-mediated delivery systems. This review will provide an overview of emerging preclinical and clinical gene therapy approaches for ALS, focusing on two main strategies: gene silencing and neuroprotection. Gene silencing techniques, including antisense oligonucleotides (ASOs), viral-mediated RNA interference, and gene editing, have demonstrated efficacy in reducing mutant gene expression, particularly in SOD1 and C9orf72 models, although clinical translation has so far yielded limited success. The recent Food and Drug Administration's approval of the ASO therapy Qalsody for SOD1-ALS underscores the clinical potential of these approaches. Neuroprotective strategies aim to enhance motor neuron survival through delivery of trophic factors, often targeting both central and peripheral tissues to harness retrograde transport mechanisms. We will discuss the advantages and limitations of various delivery vectors, targeting specificity, timing of intervention, and translational challenges, alongside current clinical trial data. This review aims to synthesize how these approaches may converge to address the multifaceted nature of ALS and guide the development of next-generation therapeutics.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\" \",\"pages\":\"1173-1198\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10430342251372898\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10430342251372898","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Targeting Amyotrophic Lateral Sclerosis with Gene Therapy: From Silencing Genes to Enhancing Neuroprotection.
Gene therapy is emerging as a transformative approach for treating amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disease. While gene replacement has shown a groundbreaking success in spinal muscular atrophy, the complexity of ALS-due to frequent gain-of-function mutations and a heterogeneous etiology-presents significant challenges. Importantly, approximately 90% of ALS cases are sporadic, with unknown genetic mutation, further complicating patient stratification and therapeutic targeting. As a result, gene therapy strategies must often address multiple pathological mechanisms simultaneously. So far, current gene therapy strategies aim to either suppress toxic gene expression or promote neuroprotection, predominantly via viral-mediated delivery systems. This review will provide an overview of emerging preclinical and clinical gene therapy approaches for ALS, focusing on two main strategies: gene silencing and neuroprotection. Gene silencing techniques, including antisense oligonucleotides (ASOs), viral-mediated RNA interference, and gene editing, have demonstrated efficacy in reducing mutant gene expression, particularly in SOD1 and C9orf72 models, although clinical translation has so far yielded limited success. The recent Food and Drug Administration's approval of the ASO therapy Qalsody for SOD1-ALS underscores the clinical potential of these approaches. Neuroprotective strategies aim to enhance motor neuron survival through delivery of trophic factors, often targeting both central and peripheral tissues to harness retrograde transport mechanisms. We will discuss the advantages and limitations of various delivery vectors, targeting specificity, timing of intervention, and translational challenges, alongside current clinical trial data. This review aims to synthesize how these approaches may converge to address the multifaceted nature of ALS and guide the development of next-generation therapeutics.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.