Human gene therapy最新文献

筛选
英文 中文
Beam Results Show First Genetic Correction of Disease-Causing Mutation.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-27 DOI: 10.1089/hum.2025.040
Alex Philippidis
{"title":"Beam Results Show First Genetic Correction of Disease-Causing Mutation.","authors":"Alex Philippidis","doi":"10.1089/hum.2025.040","DOIUrl":"https://doi.org/10.1089/hum.2025.040","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143718725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creating New Cis-Regulatory Elements of HBD to Reactivate Delta-Globin.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-21 DOI: 10.1089/hum.2024.186
Lini Chen, Diandian Liu, Weicong Hong, Luhong Xu, Lin Cheng, Ying Luo, Hui Xu, Junbin Liang, Jianpei Fang, Xinyu Li
{"title":"Creating New Cis-Regulatory Elements of HBD to Reactivate Delta-Globin.","authors":"Lini Chen, Diandian Liu, Weicong Hong, Luhong Xu, Lin Cheng, Ying Luo, Hui Xu, Junbin Liang, Jianpei Fang, Xinyu Li","doi":"10.1089/hum.2024.186","DOIUrl":"https://doi.org/10.1089/hum.2024.186","url":null,"abstract":"<p><p>β-thalassemia and sickle cell disease (SCD) are global monogenic blood system disorders, and reactivated δ-globin is expected to replace missing or abnormal β-globin. With the development of gene editing technology, activating γ-globin for treating β-thalassemia and SCD has been highly successful. However, δ-globin, as another important potential therapeutic target, has few related studies. Gene editing technology introduced cis-acting elements, including NF-Y, KLF1, GATA1, and TAL1, into the regulatory region of <i>HBD</i>, successfully activating the expression of δ-globin. It was confirmed that the activation effect of δ-globin was closely related to the location of the introduced cis-acting elements. In this study, the mutation creates a de novo binding site for KLF1 at -85∼93 bp upstream of the transcription start site of the <i>HBD</i> gene, as well as the site for TAL1 and GATA1 cobinding motifs at -59 to ∼-78 bp, which could effectively activate δ-globin.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of ABCA1 in Carotid Endothelium of Hyperlipidemic Rabbits Modulates Vascular Inflammation.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-20 DOI: 10.1089/hum.2024.166
Bradley K Wacker, Lianxiang Bi, Goren Saenz-Pipaon, Nicole Sanford, Abigail Z Regan, Natalie S Lim, Li Liu, Francis Kim, David A Dichek
{"title":"Overexpression of ABCA1 in Carotid Endothelium of Hyperlipidemic Rabbits Modulates Vascular Inflammation.","authors":"Bradley K Wacker, Lianxiang Bi, Goren Saenz-Pipaon, Nicole Sanford, Abigail Z Regan, Natalie S Lim, Li Liu, Francis Kim, David A Dichek","doi":"10.1089/hum.2024.166","DOIUrl":"https://doi.org/10.1089/hum.2024.166","url":null,"abstract":"<p><p>Endothelial activation and dysfunction are key early steps in atherogenesis. Vascular gene therapy targeting endothelial inflammation and cholesterol accumulation could decrease atherosclerosis progression. ATP-binding cassette subfamily A member 1 (ABCA1) exhibits anti-inflammatory properties and promotes cholesterol efflux. A mouse model showed that systemic endothelial overexpression of ABCA1 decreased diet-induced atherosclerosis. To test if local ABCA1 endothelial overexpression protects against atherosclerosis, we used helper-dependent adenoviral vectors (HDAd) to express ABCA1 or a \"Null\" control in the carotid endothelium of hyperlipidemic rabbits. Both <i>ABCA1</i> mRNA and endothelial protein were increased 3 days after vector infusion. After 24 weeks on a high-fat diet, laser-microdissected endothelium showed increased <i>ABCA1</i> mRNA expression, but whole-vessel <i>ABCA1</i> mRNA was decreased with HDAdABCA1. Endothelial ABCA1 protein could not be measured at 24 weeks, so its overexpression may be transient. <i>CD68</i> expression was decreased (-23%, <i>p</i> < 0.001), but <i>ITGAM</i> (-15%, <i>p</i> = 0.3) was unchanged. Macrophage markers for both M1-like macrophages (<i>IL1B</i>: -44% [<i>p</i> = 0.02]; <i>IL6</i>: -40% [<i>p</i> = 0.02]; <i>CCL2</i>: -25% [<i>p</i> = 0.02]) and M2-like macrophages (<i>ARG1</i>: -27% [<i>p</i> = 0.03]; <i>IL10</i>: -23% [<i>p</i> = 0.09]; <i>TGFB1</i>: -13% [<i>p</i> < 0.001]) were also decreased. The inflammatory cytokines <i>IL6</i> (-100%; <i>p</i> < 0.001) and <i>TNF</i> (<i>p</i> < 0.05) were significantly decreased in the laser-microdissected endothelium, but <i>VCAM1</i> (+5%, <i>p</i> = 1.0) was unchanged and <i>ICAM1</i> (+101%; <i>p</i> = 0.03) increased. Lesion size, intimal lipid, and intimal macrophage content were all unchanged (<i>p</i> > 0.5 for all), and vascular cholesterol measured by mass spectrometry (-11%; <i>p</i> = 0.9) also showed no difference. There was a small decrease in the intimal/medial ratio. scRNAseq revealed that vector transcripts were not restricted to endothelial cells after 24+ weeks but were detected in most cell types. The exception was modulated smooth muscle cells, which were found in substantial numbers in larger lesions. Overall, transient overexpression of ABCA1 in the vascular endothelium subtly alters the expression of inflammatory markers, providing only a modest atheroprotection.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of a Single-Stranded Form of DNA Impurities into the Capsid of a Recombinant Adeno-Associated Virus.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-19 DOI: 10.1089/hum.2024.264
Kazuhisa Uchida, Emi Ito-Kudo, Kiyoko Higashiyama, Kyoko Masumi-Koizumi, Keisuke Yusa, Yuzhe Yuan
{"title":"Encapsulation of a Single-Stranded Form of DNA Impurities into the Capsid of a Recombinant Adeno-Associated Virus.","authors":"Kazuhisa Uchida, Emi Ito-Kudo, Kiyoko Higashiyama, Kyoko Masumi-Koizumi, Keisuke Yusa, Yuzhe Yuan","doi":"10.1089/hum.2024.264","DOIUrl":"https://doi.org/10.1089/hum.2024.264","url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (rAAVs) are widely used viral vectors in human gene therapy. However, DNA impurities, such as plasmid DNA and host cell DNA, remain a significant quality control concern for final products. Our study examined purified rAAV1-ZsGreen1, rAAV2-ZsGreen1, rAAV5-ZsGreen1, and rAAV6-ZsGreen1 samples and found that they contained 0.69-3.27% DNA impurities derived from three plasmids, as detected by droplet digital PCR. These plasmid-derived impurities primarily consisted of those derived from the pAAV plasmid (≥98.88%), with small amounts of pRC1, pRC2mi342, pRC5, or pRC6 (≤0.91%), and pHelper (≤0.21%) plasmids. To determine the DNA strand form of these impurities within the capsids, we used two different DNases with distinct substrate specificities. The extracted DNA impurities from the rAAV samples exhibited high sensitivity to nuclease P1 but not to lambda exonuclease. Similarly, host cell DNA encapsulated within the capsids revealed similar sensitivities to the nucleases. These findings indicate that DNA impurities derived from the plasmids and host cell DNA are encapsulated into rAAV capsids as single-stranded DNA, likely through a mechanism similar to that of the rAAV genome.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Purification Methods for Minimizing Transgene Expression Background During Viral Manufacturing.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-19 DOI: 10.1089/hum.2024.115
Raphaela Bento, Alexandra Burr, Matthew Teryek, Biju Parekkadan
{"title":"Evaluation of Purification Methods for Minimizing Transgene Expression Background During Viral Manufacturing.","authors":"Raphaela Bento, Alexandra Burr, Matthew Teryek, Biju Parekkadan","doi":"10.1089/hum.2024.115","DOIUrl":"https://doi.org/10.1089/hum.2024.115","url":null,"abstract":"<p><p>Gene therapy has emerged as a promising therapeutic avenue, offering targeted treatments for various diseases. Purification of viral vectors presents a pivotal challenge, demanding the removal of impurities while preserving integrity and potency. During manufacturing, producer cells in transfection systems can be transiently transfected or retro-infected by the viral vectors they have just produced-a process referred to as \"retro-transduction\"-leading them to express the transgenes of interest. This can be a significant source of contamination in the viral solution pool, particularly when the transgenes encode extracellular, secreted proteins, resulting in cytotoxicity and reduced viral potency. Herein, we aimed to evaluate the efficiency of different viral purification systems commonly used in academic and industry settings in removing the transgene background from viral solutions. The efficiency of each system was assessed based on the levels of the secreted transgene <i>Gaussia Luciferase</i> (GLuc), which can be quickly detected in a solution and served as a readout for transgene background contamination in the viral pool during downstream processing. Through a systematic evaluation of purification methods, we identified the most effective approaches for producing pure viral batches with minimal transgene background, all while preserving viral potency and functionality. Our study revealed superior performance of batches that underwent purification via tangential flow filtration, which yielded over 90% reduction in GLuc background and the highest transduction efficiency rates. This work provides significant insights for advancing gene therapy applications that rely on the production of viral vectors encoding secreted transgenes.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Review of Osteogenesis Imperfecta: Current Treatments and Future Innovations.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-01 Epub Date: 2025-02-11 DOI: 10.1089/hum.2024.191
Sachin Chaugule, Christodoulos Kypros Constantinou, Aijaz Ahmad John, Dimitra Micha, Marelise Eekhoff, Ellen Gravallese, Guangping Gao, Jae-Hyuck Shim
{"title":"Comprehensive Review of Osteogenesis Imperfecta: Current Treatments and Future Innovations.","authors":"Sachin Chaugule, Christodoulos Kypros Constantinou, Aijaz Ahmad John, Dimitra Micha, Marelise Eekhoff, Ellen Gravallese, Guangping Gao, Jae-Hyuck Shim","doi":"10.1089/hum.2024.191","DOIUrl":"10.1089/hum.2024.191","url":null,"abstract":"<p><p>Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility due to reduced bone quality, often accompanied by low bone mass, recurrent fractures, hearing loss, skeletal abnormalities, and short stature. Pathogenic variants in over 20 genes lead to clinical and genetic variability in OI, resulting in diverse symptoms and severity. Current management involves a multidisciplinary approach, including antiresorptive medications, physiotherapy, occupational therapy, and orthopedic surgery, which provide symptomatic relief but no cure. Advancements in gene therapy technologies and stem cell therapies offer promising prospects for long-lasting or permanent solutions. This review provides a comprehensive overview of OI's classification, pathogenesis, and current treatment options. It also explores emerging biotechnologies for stem cells and gene-targeted therapies in OI. The potential of these innovative therapies and their clinical implementation challenges are evaluated, focusing on their imminent success in treating bone disorders.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"597-617"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adeno-Associated Virus Gene Therapy Development: Early Planning and Regulatory Considerations to Advance the Platform Vector Gene Therapy Program.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-01 Epub Date: 2025-02-20 DOI: 10.1089/hum.2024.230
Richa Madan Lomash, Jean Dehdashti, Oleg A Shchelochkov, Randy J Chandler, Lina Li, Irini Manoli, Jennifer L Sloan, Pramod Terse, Xin Xu, Dimah Saade, Rodica Stan, Philip J Brooks, Donald C Lo, Carsten G Bönnemann, Charles P Venditti, Anne R Pariser, Elizabeth A Ottinger
{"title":"Adeno-Associated Virus Gene Therapy Development: Early Planning and Regulatory Considerations to Advance the Platform Vector Gene Therapy Program.","authors":"Richa Madan Lomash, Jean Dehdashti, Oleg A Shchelochkov, Randy J Chandler, Lina Li, Irini Manoli, Jennifer L Sloan, Pramod Terse, Xin Xu, Dimah Saade, Rodica Stan, Philip J Brooks, Donald C Lo, Carsten G Bönnemann, Charles P Venditti, Anne R Pariser, Elizabeth A Ottinger","doi":"10.1089/hum.2024.230","DOIUrl":"10.1089/hum.2024.230","url":null,"abstract":"<p><p>Gene therapy development presents multiple challenges, and early planning is vital in the successful implementation of such programs. The Platform Vector Gene Therapy (PaVe-GT) program is a National Institutes of Health (NIH) initiative developing adeno-associated virus (AAV) gene therapies for four low-prevalence rare diseases. Utilizing the platform-based approach, the program aims to incorporate efficiencies throughout the preclinical and clinical development processes followed by public dissemination of scientific and regulatory learnings. Early in development, the establishment of a Target Product Profile (TPP) by the research team is a critical step to guide product development and align preclinical studies to clinical objectives. Based on the specific needs of the investigational product as defined in the TPP, an overall regulatory strategy can then be outlined to meet the regulatory requirements for the first-in-human clinical trials. During the preclinical phase of development, sponsors may request meetings with the Food and Drug Administration (FDA) to gather feedback on the planned studies and regulatory strategy. To pave the way for PaVe-GT's first investigational AAV gene therapy lead candidate, AAV9-hPCCA, we sought early feedback from the FDA utilizing an INitial Targeted Engagement for Regulatory Advice on CBER/CDER ProducTs (INTERACT) meeting. Here, we elaborate on the value of establishing a TPP and the FDA INTERACT meeting by including our initial AAV9-hPCCA TPP, detailing our INTERACT meeting experience, providing all corresponding regulatory documentation, and highlighting lessons learned. The regulatory documents along with templates developed by our program can also be found on the PaVe-GT website (https://pave-gt.ncats.nih.gov/). This communication aims to provide stakeholders with resources that can be applied to drug development programs in establishing a viable regulatory path to clinical trial initiation.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"653-662"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AAV-Mediated Gene Transfer of WDR45 Corrects Neurological Deficits in the Mouse Model of Beta-Propeller Protein-Associated Neurodegeneration.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-01 Epub Date: 2025-02-20 DOI: 10.1089/hum.2024.224
Maria Carla Carisi, Claire Shamber, Martha Bishop, Madison Sangster, Uma Chandrachud, Brandon Meyerink, Louis Jean Pilaz, Yulia Grishchuk
{"title":"AAV-Mediated Gene Transfer of WDR45 Corrects Neurological Deficits in the Mouse Model of Beta-Propeller Protein-Associated Neurodegeneration.","authors":"Maria Carla Carisi, Claire Shamber, Martha Bishop, Madison Sangster, Uma Chandrachud, Brandon Meyerink, Louis Jean Pilaz, Yulia Grishchuk","doi":"10.1089/hum.2024.224","DOIUrl":"10.1089/hum.2024.224","url":null,"abstract":"<p><p>Beta-propeller protein-associated neurodegeneration (BPAN) is an ultra-rare, X-linked dominant, neurodevelopmental, and neurodegenerative disease caused by loss-of-function mutations in the <i>WDR45</i> gene. It manifests in neurodevelopmental delay and seizures followed by secondary neurological decline with dystonia/parkinsonism and dementia in adolescence and early adulthood and is characterized by progressive accumulation of iron in the basal ganglia. <i>WDR45</i> encodes β-propeller-shaped scaffold protein, or WD repeat domain phosphoinositide-interacting protein 4 (WIPI4), which plays an important role in autophagosome formation. While the mechanisms of how WIPI4 loss of function results in neurological decline and brain pathology have not yet been established, findings of lower autophagic activity provide a direct link between impaired autophagy and neurological disease in BPAN. Here we performed phenotypical characterization of a novel mouse model of BPAN, Wdr45_ex9+1g>a mouse. We identified hyperactive behavior and reduction of autophagy markers in brain tissue in Wdr45_ex9+1g>a hemizygous males as early as at 2 months of age. Given the early onset and spectrum of neurological symptoms such as hyper-arousal and attention deficits in human patients, this model presents a disease-relevant phenotype and can be used in preclinical studies. We used this mouse model for a proof-of-concept study to evaluate whether adeno-associated virus (AAV)-mediated central nervous system (CNS)-targeted gene transfer of <i>WDR45</i> can provide therapeutic benefit and be considered a therapeutic paradigm for BPAN. We observed successful expression of human <i>WDR45</i> transcripts and WIPI4 protein in the brain tissue, rescue of hyperactive behavior, and correction of autophagy markers. These data demonstrate that <i>WDR45</i> gene transfer can be a promising therapeutic strategy for BPAN.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"637-652"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hum Gene Therapy Briefs March 2025.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-01 Epub Date: 2025-02-24 DOI: 10.1089/hum.2025.017
Alex Philippidis
{"title":"Hum Gene Therapy Briefs March 2025.","authors":"Alex Philippidis","doi":"10.1089/hum.2025.017","DOIUrl":"https://doi.org/10.1089/hum.2025.017","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"36 5-6","pages":"593-596"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimally Humanized Ezh2 Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome.
IF 3.9 3区 医学
Human gene therapy Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI: 10.1089/hum.2024.170
William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson
{"title":"Minimally Humanized <i>Ezh2</i> Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome.","authors":"William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson","doi":"10.1089/hum.2024.170","DOIUrl":"10.1089/hum.2024.170","url":null,"abstract":"<p><p>Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (<i>EZH2</i>), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to \"correct\" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as <i>in vitro</i> and <i>in vivo</i> mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense <i>EZH2</i> variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that <i>Streptococcus pyogenes</i> Cas9 (<i>Sp</i>Cas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, <i>Staphylococcus aureus</i> Cas9 (<i>Sa</i>Cas9) gave a variant correction (52.5%) that was not significantly different than <i>Sp</i>Cas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small <i>Sa</i>Cas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"618-627"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信