Human gene therapyPub Date : 2024-04-01Epub Date: 2023-07-07DOI: 10.1089/hum.2023.025
Shaun R Wood, Ahsan Chaudrhy, Stuart Ellison, Rachel Searle, Constance Burgod, Ghazala Tehseen, Gabriella Forte, Claire O'Leary, Hélène Gleitz, Aiyin Liao, James Cook, Rebecca Holley, Brian W Bigger
{"title":"Fusion of Rabies Virus Glycoprotein or gh625 to Iduronate-2-Sulfatase for the Treatment of Mucopolysaccharidosis Type II.","authors":"Shaun R Wood, Ahsan Chaudrhy, Stuart Ellison, Rachel Searle, Constance Burgod, Ghazala Tehseen, Gabriella Forte, Claire O'Leary, Hélène Gleitz, Aiyin Liao, James Cook, Rebecca Holley, Brian W Bigger","doi":"10.1089/hum.2023.025","DOIUrl":"10.1089/hum.2023.025","url":null,"abstract":"<p><p>Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the <i>IDS</i> gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"232-242"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Correction to:</i> Efficacy and Safety of Adeno-Associated Virus-Based Clinical Gene Therapy for Hemophilia: A Systematic Review and Meta-Analysis, by Han et al. <i>Hum Gene Ther</i> 2024;35(3-4):93-103; doi: 10.1089/hum.2023.208.","authors":"","doi":"10.1089/hum.2023.208.correx","DOIUrl":"https://doi.org/10.1089/hum.2023.208.correx","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyu Yu, Fang Sun, Yan Xu, Hao Yang, Chongyu Tian, Cong Li, Yimin Kang, Lei Hao, Penghui Yang
{"title":"Combination Immunotherapy of Oncolytic Flu-Vectored Virus and Programmed Cell Death 1 Blockade Enhances Antitumor Activity in Hepatocellular Carcinoma.","authors":"Hongyu Yu, Fang Sun, Yan Xu, Hao Yang, Chongyu Tian, Cong Li, Yimin Kang, Lei Hao, Penghui Yang","doi":"10.1089/hum.2023.150","DOIUrl":"10.1089/hum.2023.150","url":null,"abstract":"<p><p>Oncolytic viruses (OVs) are appealing anti-tumor agents. But it is limited in its effectiveness. In this study, we used combination therapy with immune checkpoint inhibitor to enhance the antitumor efficacy of OVs. Using reverse genetics technology, we rescued an oncolytic influenza virus with the name delNS1-GM-CSF from the virus. After identifying the hemagglutination and 50% tissue culture infectivedose (TCID<sub>50</sub>) of delNS1-GM-CSF, it was purified, and the viral morphology was observed under electron microscopy. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) was used to identify the level of GM-CSF expression in delNS1-GM-CSF, and the GM-CSF expression level was determined after infection with delNS1-GM-CSF by enzyme linked immunosorbent assay (ELISA). To study the tumor-killing effect of delNS1-GM-CSF, we utilized the hepatocellular carcinoma (HCC) tumor-bearing mouse model. To examine signaling pathways, we performed transcriptome sequencing on mouse tumor tissue and applied western blotting to confirm the results. Changes in T-cell infiltration in HCC tumors following treatment were analyzed using flow cytometry and immunohistochemistry. DelNS1-GM-CSF can target and kill HCCs without damaging normal hepatocytes. DelNS1-GM-CSF combined with programmed cell death 1 blockade therapy enhanced anti-tumor effects and significantly improved mouse survival. Further, we found that combination therapy had an antitumor impact via the janus kinase-signal transducer and activator of transcription (JAK2-STAT3) pathway as well as activated CD4+ and CD8+T cells. Interestingly, combined therapy also showed promising efficacy in distant tumors. DelNS1-GM-CSF is well targeted. Mechanistic investigation revealed that it functions through the JAK2-STAT3 pathway. Combination immunotherapies expected to be a novel strategy for HCC immunotherapy.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"177-191"},"PeriodicalIF":3.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa.","authors":"Xuehan Sun, Chen Liang, Yangcan Chen, Tongtong Cui, Jiabao Han, Moyu Dai, Ying Zhang, Qi Zhou, Wei Li","doi":"10.1089/hum.2023.201","DOIUrl":"10.1089/hum.2023.201","url":null,"abstract":"<p><p>Mutations in the rhodopsin (<i>RHO</i>) gene are the predominant causes of autosomal dominant retinitis pigmentosa (adRP). Given the diverse gain-of-function mutations, therapeutic strategies targeting specific sequences face significant challenges. Here, we provide a universal approach to conquer this problem: we have devised a CRISPR-Cas12i-based, mutation-independent gene knockout and replacement compound therapy carried by a dual AAV2/8 system. In this study, we successfully delayed the progression of retinal degeneration in the classic mouse disease model <i>Rho<sup>P23H</sup></i>, and also <i>Rho<sup>P347S</sup></i>, a new native mouse mutation model we developed. Our research expands the horizon of potential options for future treatments of RHO-mediated adRP.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"151-162"},"PeriodicalIF":3.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic Strategy for Fabry Disease by Intravenous Administration of Adeno-Associated Virus 9 in a Symptomatic Mouse Model.","authors":"Yuka Hayashi, Yoshihide Sehara, Ryota Watano, Kenji Ohba, Yuki Takayanagi, Yoshio Sakiyama, Kazuhiro Muramatsu, Hiroaki Mizukami","doi":"10.1089/hum.2023.106","DOIUrl":"10.1089/hum.2023.106","url":null,"abstract":"<p><p>Fabry disease (FD) is an inherited lysosomal storage disease caused by deficiency of α-galactosidase A (α-Gal A), an enzyme that hydrolyzes glycosphingolipids in lysosome. Accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3) in tissues, induces cellular dysfunction leading to multi-organ disorder. Gene therapy is a promising strategy that can overcome these problems, and virus vectors such as adeno-associated virus (AAV) have been used for study on gene therapy. We used human Gb3 synthetase-transgenic (TgG3S)/α-Gal A knockout (GLAko) mice. TgG3S/GLAko mice have elevated Gb3 accumulation in the major organs compared with GLAko mice, which have been widely used as a model for FD. At the age of 6 weeks, male TgG3S/GLAko were injected with 2 × 10<sup>12</sup> vector genome AAV9 vectors containing human α-Gal A cDNA. Eight weeks after intravenous injection of AAV, α-Gal A enzymatic activity was elevated in the plasma, heart, and liver of TgG3S/GLAko mice to levels corresponding to 224%, 293%, and 105% of wild-type, respectively. Gb3 amount 8 weeks after AAV injection in the heart and liver of this group was successfully reduced to levels corresponding to 16% and 3% of untreated TgG3S/GLAko mice. Although the brain and kidney of AAV9-treated TgG3S/GLAko mice showed no significant increases in α-Gal A activity, Gb3 amount was smaller than untreated littermates (48% and 44%, respectively). In this study, systemic AAV administration did not show significant extension of the lifespan of TgG3S/GLAko mice compared with the untreated littermates. The timing of AAV injection, capsid choice, administration route, and injection volume may be important to achieve sufficient expression of α-Gal A in the whole body for the amelioration of lifespan.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"192-201"},"PeriodicalIF":3.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Status and Prospects of Viral Vector-Based Gene Therapy to Treat Kidney Diseases.","authors":"Louise Medaer, Koenraad Veys, Rik Gijsbers","doi":"10.1089/hum.2023.184","DOIUrl":"10.1089/hum.2023.184","url":null,"abstract":"<p><p>Inherited kidney diseases are among the leading causes of chronic kidney disease, reducing the quality of life and resulting in substantial socioeconomic impact. The advent of early genetic testing and the growing understanding of the molecular basis and pathophysiology of these disorders have opened avenues for novel treatment strategies. Viral vector-based gene therapies have evolved from experimental treatments for rare diseases to potent platforms that carry the intrinsic potential to provide a cure with a single application. Several gene therapy products have reached the market, and the numbers are only expected to increase. Still, none target inherited kidney diseases. Gene transfer to the kidney has lagged when compared to other tissue-directed therapies such as hepatic, neuromuscular, and ocular tissues. Systemic delivery of genetic information to tackle kidney disease is challenging. The pharma industry is taking steps to take on kidney disease and to translate the current research into the therapeutic arena. In this review, we provide an overview of the current viral vector-based approaches and their potential. We discuss advances in platforms and injection routes that have been explored to enhance gene delivery toward kidney cells in animal models, and how these can fuel the development of viable gene therapy products for humans.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"139-150"},"PeriodicalIF":3.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lars Thalmann, Natalia Martin-Gonzalez, Dominik Brücher, Andreas Plückthun, Pedro J de Pablo, Maarit Suomalainen, Urs F Greber
{"title":"Gutless Helper-Dependent and First-Generation HAdV5 Vectors Have Similar Mechanical Properties and Common Transduction Mechanisms.","authors":"Lars Thalmann, Natalia Martin-Gonzalez, Dominik Brücher, Andreas Plückthun, Pedro J de Pablo, Maarit Suomalainen, Urs F Greber","doi":"10.1089/hum.2023.221","DOIUrl":"10.1089/hum.2023.221","url":null,"abstract":"<p><p>Delivering vectorized information into cells with the help of viruses has been of high interest to fundamental and applied science, and bears significant therapeutic promise. Human adenoviruses (HAdVs) have been at the forefront of gene delivery for many years, and the subject of intensive development resulting in several generations of agents, including replication-competent, -defective or retargeted vectors, and recently also helper-dependent (HD), so-called gutless vectors lacking any viral protein coding information. While it is possible to produce HD-AdVs in significant amounts, physical properties of these virus-like particles and their efficiency of transduction have not been addressed. Here, we used single-cell and single virus particle assays to probe the effect of genome length on HAdV-C5 vector transduction. Our results demonstrate that first-generation C5 vectors lacking the E1/E3 regions of the viral genome as well as HD-AdV-C5 particles with a wild type (wt) ∼36 kbp or an undersized double-strand DNA genome are similar to human adenovirus C5 (HAdV-C5) wt regarding attachment to human lung epithelial cells, endocytic uptake, endosome penetration and dependency on the E3 RING ubiquitin ligase Mind Bomb 1 for DNA uncoating at the nuclear pore complex. Atomic force microscopy measurements of single virus particles indicated that small changes in the genome length from 94% to 103% of HAdV-C5 have no major impact on physical and mechanical features of AdV vectors. In contrast, an HD-AdV-C5 with ∼30 kbp genome was slightly stiffer and less heat-resistant than the other particles, despite comparable entry and transduction efficiencies in tissue culture cell lines, including murine alveolar macrophage-like Max-Planck-Institute (MPI)-2 cells. Together, our <i>in vitro</i> studies reinforce the use of HD-AdV vectors for effective single round gene delivery. The results illustrate how physical properties and cell entry behavior of single virus particles can provide functional information for anticipated therapeutic vector applications.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"163-176"},"PeriodicalIF":3.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barry J Byrne, Terence R Flotte, Roland W Herzog, Arun Srivastava
{"title":"Kenneth I. Berns, MD, PhD [1938-2024].","authors":"Barry J Byrne, Terence R Flotte, Roland W Herzog, Arun Srivastava","doi":"10.1089/hum.2024.29266.kib","DOIUrl":"10.1089/hum.2024.29266.kib","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"35 5-6","pages":"133-134"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathan Yingling, Miguel Sena-Esteves, Heather L Gray-Edwards
{"title":"A Paradox of the Field's Own Success: Unintended Challenges in Bringing Cutting-Edge Science from the Bench to the Market.","authors":"Nathan Yingling, Miguel Sena-Esteves, Heather L Gray-Edwards","doi":"10.1089/hum.2023.29264.nyi","DOIUrl":"10.1089/hum.2023.29264.nyi","url":null,"abstract":"","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"35 3-4","pages":"83-88"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}