慢病毒基因递送拯救原发性纤毛运动障碍患者源性气道类器官的纤毛缺陷。

IF 4 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chunxiao Huo, Ting Luo, Lei Wu, Feng Yang, Zhangqi Xu, Xiaofen Tao, Junhua Xia, Tianhua Zhou, Yuan Jiang, Shanshan Xie
{"title":"慢病毒基因递送拯救原发性纤毛运动障碍患者源性气道类器官的纤毛缺陷。","authors":"Chunxiao Huo, Ting Luo, Lei Wu, Feng Yang, Zhangqi Xu, Xiaofen Tao, Junhua Xia, Tianhua Zhou, Yuan Jiang, Shanshan Xie","doi":"10.1177/10430342251378128","DOIUrl":null,"url":null,"abstract":"<p><p>Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by defective ciliary motility, leading to recurrent respiratory infections and chronic airway damage. Gene therapy holds promise for treating PCD, but its effectiveness in patient-derived models remains uncertain. This study aimed to evaluate the therapeutic potential of lentiviral gene delivery in restoring ciliary function in patient-derived nasal apical-out airway organoids. Using nasal epithelial cells from both healthy individuals and PCD patients with mutations in <i>DNAAF1</i>, <i>DNAAF3</i>, or <i>DNAAF6</i>, we established organoid models to assess gene therapy efficacy. Lentiviral vectors successfully restored the expression and proper localization of DNAAF proteins in mutant organoids, significantly improving ciliary beating frequency and the proportion of organoids with functional cilia. These findings provide proof-of-concept evidence supporting gene therapy as a viable approach to correct ciliary defects in PCD, paving the way for targeted treatments.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lentiviral Gene Delivery Rescues Ciliary Defects in Patient-Derived Airway Organoids from Primary Ciliary Dyskinesia.\",\"authors\":\"Chunxiao Huo, Ting Luo, Lei Wu, Feng Yang, Zhangqi Xu, Xiaofen Tao, Junhua Xia, Tianhua Zhou, Yuan Jiang, Shanshan Xie\",\"doi\":\"10.1177/10430342251378128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by defective ciliary motility, leading to recurrent respiratory infections and chronic airway damage. Gene therapy holds promise for treating PCD, but its effectiveness in patient-derived models remains uncertain. This study aimed to evaluate the therapeutic potential of lentiviral gene delivery in restoring ciliary function in patient-derived nasal apical-out airway organoids. Using nasal epithelial cells from both healthy individuals and PCD patients with mutations in <i>DNAAF1</i>, <i>DNAAF3</i>, or <i>DNAAF6</i>, we established organoid models to assess gene therapy efficacy. Lentiviral vectors successfully restored the expression and proper localization of DNAAF proteins in mutant organoids, significantly improving ciliary beating frequency and the proportion of organoids with functional cilia. These findings provide proof-of-concept evidence supporting gene therapy as a viable approach to correct ciliary defects in PCD, paving the way for targeted treatments.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10430342251378128\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10430342251378128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

原发性纤毛运动障碍(PCD)是一种以纤毛运动缺陷为特征的遗传性疾病,可导致反复呼吸道感染和慢性气道损伤。基因疗法有望治疗PCD,但其在患者衍生模型中的有效性仍不确定。本研究旨在评估慢病毒基因递送在恢复患者源性鼻尖向外气道类器官纤毛功能方面的治疗潜力。使用健康个体和DNAAF1、DNAAF3或DNAAF6突变的PCD患者的鼻上皮细胞,我们建立了类器官模型来评估基因治疗的效果。慢病毒载体成功恢复了突变体类器官中DNAAF蛋白的表达和正确定位,显著提高了纤毛跳动频率和具有功能纤毛的类器官比例。这些发现提供了概念验证证据,支持基因治疗作为纠正PCD纤毛缺陷的可行方法,为靶向治疗铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lentiviral Gene Delivery Rescues Ciliary Defects in Patient-Derived Airway Organoids from Primary Ciliary Dyskinesia.

Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by defective ciliary motility, leading to recurrent respiratory infections and chronic airway damage. Gene therapy holds promise for treating PCD, but its effectiveness in patient-derived models remains uncertain. This study aimed to evaluate the therapeutic potential of lentiviral gene delivery in restoring ciliary function in patient-derived nasal apical-out airway organoids. Using nasal epithelial cells from both healthy individuals and PCD patients with mutations in DNAAF1, DNAAF3, or DNAAF6, we established organoid models to assess gene therapy efficacy. Lentiviral vectors successfully restored the expression and proper localization of DNAAF proteins in mutant organoids, significantly improving ciliary beating frequency and the proportion of organoids with functional cilia. These findings provide proof-of-concept evidence supporting gene therapy as a viable approach to correct ciliary defects in PCD, paving the way for targeted treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信