GroundwaterPub Date : 2025-05-13DOI: 10.1111/gwat.13494
Sihai Wang, Jin Xu, Wenfan Zhang, Zhenghang Yi, Hao Chen
{"title":"Hydraulic Response to Sea Level Rise in a Coastal Aquifer Extending under the Sea with a Cut-off Wall","authors":"Sihai Wang, Jin Xu, Wenfan Zhang, Zhenghang Yi, Hao Chen","doi":"10.1111/gwat.13494","DOIUrl":"10.1111/gwat.13494","url":null,"abstract":"<p>Seawater intrusion can cause the freshwater-saltwater interface to move inland toward coastal freshwater aquifers. Sea level rise has become a significant driver of this phenomenon. Installing cut-off walls along coastal aquifers is an effective engineering measure to mitigate seawater intrusion. However, most analyses of groundwater flow under sea level rise, particularly with cut-off walls, primarily rely on numerical methods, with limited analytical approaches available. In this study, we developed mathematical models for groundwater flow induced by sea level rise, dividing the coastal aquifer into offshore and inland regions along the cut-off wall. An unknown flow function was introduced as a boundary condition at the shared boundary. Using homogenization and the finite Fourier transform method, we derived analytical solutions for the two regions separately. A global coupling solution, achieving hydraulic continuity between the two regions, was obtained by applying the collocation method at the shared boundary. The validity of the solution was confirmed through comparisons with finite difference numerical simulations. Furthermore, we analyzed the impacts of factors such as sea level rise amplitude and cut-off wall embedment depth on hydraulic changes. The results indicate that increases in the amplitude of sea level rise significantly amplify hydraulic head changes in the inland aquifers, while deeper embedment of the cut-off wall enhances its effectiveness in preventing seawater intrusion. However, the model does not consider density differences between freshwater and saltwater or the dynamics of the saltwater-freshwater interface.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 4","pages":"570-579"},"PeriodicalIF":2.0,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-05-12DOI: 10.1111/gwat.13488
Ata Joodavi, Hadi Sanikhani, Maysam Majidi, Parasto Baghbanan
{"title":"Spatial Prediction Modeling of Geogenic Chromium in Groundwater Using Soft Computing Techniques","authors":"Ata Joodavi, Hadi Sanikhani, Maysam Majidi, Parasto Baghbanan","doi":"10.1111/gwat.13488","DOIUrl":"10.1111/gwat.13488","url":null,"abstract":"<p>The presence of chromium (Cr) in groundwater poses a significant threat to human health. However, the lack of testing in many wells suggests that the severity of this issue may be underestimated. In this study, various predictive models, including soft computing techniques such as gene expression programming (GEP), artificial neural networks (ANN), multivariate adaptive regression splines (MARS), and the M5 Tree model, along with random forest (RF) and multiple linear regression (MLR), were employed to estimate geogenic Cr concentrations in groundwater based on geological and geochemical parameters in northeastern Iran. A dataset of 676 Cr concentration measurements was used to train and evaluate the models. Among the methods tested, ANN demonstrated the highest predictive accuracy, followed closely by RF, which provided competitive results. GEP and MARS also showed reasonable performance, while MLR exhibited the weakest accuracy, highlighting the limitations of linear models in addressing complex geochemical processes. The ANN model identified over 600,000 individuals in the central and western regions of the study area as being at significant risk of geogenic Cr contamination in groundwater. The findings underscore the potential of advanced predictive models in groundwater quality management and their applicability in other regions with similar challenges.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 4","pages":"538-550"},"PeriodicalIF":2.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-05-06DOI: 10.1111/gwat.13490
Patrick Durney, Antoine Di Ciacca, Scott Wilson, Thomas Wöhling
{"title":"Multi-Purpose Data Worth Assessment of a Surface Water-Groundwater and Nitrogen Transport Model","authors":"Patrick Durney, Antoine Di Ciacca, Scott Wilson, Thomas Wöhling","doi":"10.1111/gwat.13490","DOIUrl":"10.1111/gwat.13490","url":null,"abstract":"<p>Understanding which hydrological data types provide the most valuable information for models is crucial, given the limitations of data availability. This study applies data worth analysis to evaluate the impact of various observation types on predictive uncertainty in a coupled SWAT-MODFLOW-RT3D model simulating water flows and nitrate transport in a small headwater catchment in New Zealand. We assessed the worth of continuous nitrate concentrations, in-catchment flow measurements, and SkyTEM-derived groundwater levels for predicting stream flow and in-stream nitrate concentrations. Using PEST software for model calibration and linear uncertainty analysis, we determined the relative worth of different observation types. Results indicate that SkyTEM estimates of groundwater levels and continuously measured nitrate concentrations were particularly effective in reducing predictive uncertainty. This study highlights the value of integrating high-resolution SkyTEM data into models to enhance prediction accuracy for groundwater levels, stream flow, and nitrate pollution. It also demonstrates nitrate's utility as an environmental tracer, refining our understanding of surface water–groundwater interactions and solute transport in the Piako Headwaters Catchment.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 4","pages":"580-594"},"PeriodicalIF":2.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144046304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-05-02DOI: 10.1111/gwat.13489
Amandine L. Bosserelle, Leanne K. Morgan
{"title":"Transience of Coastal Water Table Rise in Response to Sea-Level Rise","authors":"Amandine L. Bosserelle, Leanne K. Morgan","doi":"10.1111/gwat.13489","DOIUrl":"10.1111/gwat.13489","url":null,"abstract":"<p>Coastal shallow groundwater is susceptible to adverse sea-level rise (SLR) impacts. Existing research primarily focuses on SLR-induced salinization of coastal aquifers. There is limited understanding of the magnitudes and rates of water table rise in response to SLR, which could lead to groundwater flooding and associated infrastructure challenges. This study used a variable-density groundwater flow model to quantify the transient movement of the water table in response to various SLR scenarios and rates, considering a range of aquifer parameters for both fixed-head and fixed-flux inland boundary conditions. The SLR scenario based on realistic and progressive SLR projections resulted in a smaller water table rise than the instantaneous or gradual SLR scenarios at 100 years, despite a final identical SLR. Rates of water table rise were always less than SLR, decreased with distance from the coastline, and were proportional to SLR. The magnitude and rate of water table rise in response to SLR were largest for fixed-flux conditions. It also took longer for the rate of water table rise to equilibrate after the commencement of SLR for fixed-flux conditions than for fixed-head conditions. As such, fixed-flux conditions represent a greater hazard for water table rise, and the maximum impact may not be experienced for decades. This delayed response poses challenges to planners and managers of coastal groundwater systems. Introducing a drain reduced water table rise more on the inland side of the drain than on the coastal side. Subsurface infrastructure may limit SLR impacts, but further effects need to be carefully considered.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 4","pages":"551-569"},"PeriodicalIF":2.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-04-23DOI: 10.1111/gwat.13482
David J. Hoekema, Jae Ryu, John T. Abatzoglou
{"title":"Validation of the Impacts of Recent Aquifer Management on the Eastern Snake Plain Aquifer in Idaho, USA","authors":"David J. Hoekema, Jae Ryu, John T. Abatzoglou","doi":"10.1111/gwat.13482","DOIUrl":"10.1111/gwat.13482","url":null,"abstract":"<p>An ongoing major challenge faced in portions of the western United States is to stop the decline of aquifers that are hydraulically connected to rivers. As these aquifers decline, streamflow is depleted, resulting in impacts to agriculture, environmental flows, and hydropower production. In 2014, the Idaho Water Resource Board initiated an aquifer recharge program, and in 2015 a historic settlement agreement (hereafter referred to as the <i>Settlement Agreement</i>) was signed by surface water users with senior water rights and groundwater pumpers with junior water rights to stop the decline of the eastern Snake Plain Aquifer (ESPA) in southern Idaho (SWC-IGWA 2015). Here, we assess mitigation measures they have undertaken to reverse the downward trajectory of groundwater levels in the ESPA using drought indices correlated to the combined head change of a suite of groundwater monitoring wells. The results were then compared against the predictions of the Enhanced Snake Plain Aquifer Model (ESPAM), which is a MODFLOW-based aquifer model. The drought indices indicate that without the aquifer recharge program and reductions in groundwater pumping, the aquifer head would have been 1.1 to 1.3 m lower than observed in 2023, indicating implemented water management practices reduced the volumetric loss to the aquifer by 2500 million cubic meters (2,000,000 acre-feet). The result, therefore, implies that Idaho water users and managers have succeeded in changing the trajectory of ESPA water levels.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 3","pages":"387-398"},"PeriodicalIF":2.0,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143902868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-04-21DOI: 10.1111/gwat.13487
Thomas Wöhling, Alvaro Oliver Crespo Delgadillo, Moritz Kraft, Anneli Guthke
{"title":"Comparing Physics-Based, Conceptual and Machine-Learning Models to Predict Groundwater Levels by BMA","authors":"Thomas Wöhling, Alvaro Oliver Crespo Delgadillo, Moritz Kraft, Anneli Guthke","doi":"10.1111/gwat.13487","DOIUrl":"10.1111/gwat.13487","url":null,"abstract":"<p>Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer-function model, and three machine learning models, namely, multi-layer perceptron models, long short-term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run-times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data-driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics-based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data-driven models with low input requirements and short run-times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no “single best” model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine-tune for each tested well individually. This is a remarkable result that strengthens the argument for physics-based approaches even for seemingly “simple” groundwater level prediction tasks.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 4","pages":"484-505"},"PeriodicalIF":2.0,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13487","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-04-17DOI: 10.1111/gwat.13486
Raoul A. Collenteur, Martin A. Vonk, Ezra Haaf
{"title":"Quantification and Analysis of Hydrograph Behavior Using Groundwater Signatures","authors":"Raoul A. Collenteur, Martin A. Vonk, Ezra Haaf","doi":"10.1111/gwat.13486","DOIUrl":"10.1111/gwat.13486","url":null,"abstract":"<p>The study of hydraulic head changes over time is a common task for groundwater hydrologists. Groundwater signatures are numerical metrics, or statistical aggregates, that quantify the behavior observed in hydraulic head hydrographs. Signatures can be helpful in a number of classical hydrological tasks, such as hydrograph classification, clustering, change detection, and model evaluation, selection, and calibration. Despite the potential benefits of using signatures in groundwater studies, their application has not yet been thoroughly explored. To support research into the application of signatures in groundwater studies, we introduce the new groundwater signatures module from the Pastas software. The signatures module is written in Python, fully tested and documented, and available as open-source software under the MIT license. In this paper, it is shown how the signatures are tested and can be used in practical applications through two examples. In the first example, signatures are used to characterize and cluster monitoring wells in a nationwide monitoring network in Switzerland. In the second example, signatures are used to evaluate how well different groundwater model structures simulate the heads. Future research opportunities involving groundwater signatures are discussed.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 5","pages":"779-789"},"PeriodicalIF":2.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ngwa.onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144055124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-04-09DOI: 10.1111/gwat.13483
Babak Azari, Brian Waldron, Farhad Jazaei
{"title":"A New Explicit Solver for MODFLOW Enabling Small Time Step Simulations","authors":"Babak Azari, Brian Waldron, Farhad Jazaei","doi":"10.1111/gwat.13483","DOIUrl":"10.1111/gwat.13483","url":null,"abstract":"<p>Surface water (SW) and groundwater (GW) models, such as MODFLOW and HEC-RAS, have been explored to simulate the complexities of SW–GW interactions. However, individual models are not capable of capturing the full complexity of these interactions. To overcome individual models' shortcomings, researchers introduced the model coupling concept. This concept helps compensate for each individual model's shortcomings and incorporates the models' advantages. However, challenges arise from temporal scale disparities between SW and GW models. To tackle the temporal scale issue, this study introduces the novel explicit solver (EXP1) for MODFLOW 2005, enabling GW modeling using small time steps matching SW models (i.e., 15 min) by reducing runtime and computational burden. The EXP1 solver incorporates an integrated stability criterion to ensure the stability of explicit schemes, and it was systematically evaluated against the Preconditioned Conjugate Gradient (PCG) solver across various scenarios, including a 1-dimensional, 2-dimensional, and a vast 3-dimensional model. Results demonstrated the efficiency and accuracy of EXP1 in predicting groundwater heads and water budget, along with considerably reduced runtimes of up to 33% compared with the PCG solver, with less than 0.4% discrepancy in the water budget. These findings underscore the effectiveness of EXP1 in facilitating groundwater small time step simulations and bridging the temporal scale gap between SW and GW models.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 5","pages":"764-778"},"PeriodicalIF":2.0,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2025-03-29DOI: 10.1111/gwat.13481
Carla Romano
{"title":"Neonicotinoids in Groundwater: Persistent Contaminants and Unresolved Risks","authors":"Carla Romano","doi":"10.1111/gwat.13481","DOIUrl":"10.1111/gwat.13481","url":null,"abstract":"<p>Many people remember the ban on DDT in the 1970s, but what happened to insecticides after that? The agriculture industry quickly shifted to alternatives, with organophosphates becoming the dominant replacement. By the early 1990s, neonicotinoids emerged as a new class of insecticides, praised for their lower toxicity to mammals, effectiveness at low doses, and systemic action, which allows plants to absorb them for long-term pest protection. In theory, these qualities made neonicotinoids a safer and more efficient alternative. However, nearly 40 years after their introduction, they have emerged as new contaminants in groundwater, raising concerns about their environmental and human health impacts, which remain poorly understood.</p><p>The rapid increase in neonicotinoid use since the early 2000s has made them the most widely used insecticides in the United States today. These chemicals are applied to major crops such as corn, soybeans, and specialty fruits, as well as in residential pest control products and flea treatments for pets. While their use extends beyond agriculture, the majority is tied to agricultural applications, where they are primarily applied as seed treatments, but also through in-furrow, soil applications, and foliar sprays. Seed treatments gained favor for their ability to provide targeted, systemic pest protection from germination and minimize pesticide drift into non-target areas. However, this widespread adoption has led to unintended consequences, particularly their persistence in soil and water.</p><p>Neonicotinoids are highly mobile in water and can persist in the environment, with degradation times ranging from days to years depending on the compound and environmental conditions (Pietrzak et al. <span>2020</span>). Imidacloprid, thiamethoxam, and clothianidin are among the most widely used neonicotinoids, and these compounds have been detected in groundwater across the US. Groundwater quality data from the EPA Water Quality Portal, collected from 1999 to 2024, reveals that at least one of these compounds was detected in wells across 30 of the 50 states (EPA Water Quality Portal <span>2024</span>). In Wisconsin, detections have been particularly prevalent in areas with sandy soils and shallow groundwater table, such as the Central Sands Region (Senger et al. <span>2019</span>; Romano et al. <span>2023</span>). Recent monitoring efforts suggest that these chemicals are now present in groundwater throughout much of the state (Romano et al. <span>2024</span>).</p><p>The detection of neonicotinoids in groundwater and elsewhere in the environment has raised concerns about their ecological and human health impacts. Since the late 2000s, research has documented lethal and/or sublethal effects on a range of organisms, including bees and butterflies, as well as aquatic vertebrates and invertebrates (Schneider et al. <span>2012</span>; Morrissey et al. <span>2015</span>; Rundlöf et al. <span>2015</span>; Eng et al. <span>2019</","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 3","pages":"298-299"},"PeriodicalIF":2.0,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13481","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}