GroundwaterPub Date : 2024-10-11DOI: 10.1111/gwat.13443
Jenny T. Soonthornrangsan, Mark Bakker, Femke C. Vossepoel
{"title":"Linked Data-Driven, Physics-Based Modeling of Pumping-Induced Subsidence with Application to Bangkok, Thailand","authors":"Jenny T. Soonthornrangsan, Mark Bakker, Femke C. Vossepoel","doi":"10.1111/gwat.13443","DOIUrl":"10.1111/gwat.13443","url":null,"abstract":"<p>Research into land subsidence caused by groundwater withdrawal is hindered by the availability of measured heads, subsidence, and forcings. In this paper, a parsimonious, linked data-driven and physics-based approach is introduced to simulate pumping-induced subsidence; the approach is intended to be applied at observation well nests. Time series analysis using response functions is applied to simulate heads in aquifers. The heads in the clay layers are simulated with a one-dimensional diffusion model, using the heads in the aquifers as boundary conditions. Finally, simulated heads in the layers are used to model land subsidence. The developed approach is applied to the city of Bangkok, Thailand, where relatively short time series of head and subsidence measurements are available at or near 23 well nests; an estimate of basin-wide pumping is available for a longer period. Despite the data scarcity, data-driven time series models at observation wells successfully simulate groundwater dynamics in aquifers with an average root mean square error (RMSE) of 2.8 m, relative to an average total range of 21 m. Simulated subsidence matches sparse (and sometimes very noisy) land subsidence measurements reasonably well with an average RMSE of 1.6 cm/year, relative to an average total range of 5.4 cm/year. Performance is not good at eight out of 23 locations, most likely because basin-wide pumping is not representative of localized pumping. Overall, this study demonstrates the potential of a parsimonious, linked data-driven, and physics-based approach to model pumping-induced subsidence in areas with limited data.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 2","pages":"145-159"},"PeriodicalIF":2.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-09-23DOI: 10.1111/gwat.13442
Ronny Figueroa, Etienne Bresciani
{"title":"A Close-to-Optimal Discretization Strategy for Pumping Test Numerical Simulation","authors":"Ronny Figueroa, Etienne Bresciani","doi":"10.1111/gwat.13442","DOIUrl":"10.1111/gwat.13442","url":null,"abstract":"<p>Numerical modeling offers a valuable alternative to analytical solutions for pumping test analysis. However, little is known about how discretization impacts results accuracy and runtime. This study presents a systematic method for defining the spatiotemporal discretization of pumping test numerical models based on dimensionless parameters. Two types of analysis are considered: one where observations are made in the pumping well, and another one where observations are made in different wells. The influence of the discretization parameters on results accuracy and runtime is investigated and an optimal set of parameters is determined that minimizes runtime while maintaining the maximum error under 1% for an “average” aquifer. Lower runtimes are achieved when the analysis focuses on the pumping well, which is attributed to the steady-state analytical solution approximating drawdown in the well in the numerical scheme employed. Additional tests demonstrate the robustness of the derived set of parameters in different configurations.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"105-115"},"PeriodicalIF":2.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13442","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-09-18DOI: 10.1111/gwat.13441
John P. McDonald
{"title":"Pressure Transducer Measurement Variability in Deep Wells Screened Across the Water Table","authors":"John P. McDonald","doi":"10.1111/gwat.13441","DOIUrl":"10.1111/gwat.13441","url":null,"abstract":"<p>Automated water level measurements collected using vented pressure transducers in deep wells screened across the water table may exhibit a greater response to barometric pressure changes than the true water level. The cause was hypothesized to be disequilibrium in barometric pressure between the wellbores and land surface due to air exchange with the deep vadose zone. In this study, vented and nonvented pressure transducers were installed and operated simultaneously in two deep wells screened across the water table. A vent tube open to the atmosphere at land surface allowed for barometric compensation of the vented transducers. Two nonvented transducers were installed in each well, one submerged in the water and one above the water surface. The difference in readings allowed for barometric compensation. Manual measurements were also collected. It was confirmed that measurements from the vented transducers exhibited greater variability in response to barometric pressure changes than the nonvented transducers and manual measurements. Comparison of the downhole barometric pressure measurements to values from a nearby meteorology station showed the response in the wells to changes in barometric pressure was time-lagged and attenuated. Thus, the reference pressure from land surface supplied to the vented transducers was not representative of the air pressure within the wells. This caused fluctuations of the transducer readings in response to barometric pressure changes to be greater than the true water level change. This issue can be resolved by the use of nonvented pressure transducers.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 2","pages":"220-230"},"PeriodicalIF":2.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-08-16DOI: 10.1111/gwat.13439
Ty Ferre
{"title":"MS Students Are the Missing Link in the Future of Hydrogeology – And How You Can Help!","authors":"Ty Ferre","doi":"10.1111/gwat.13439","DOIUrl":"10.1111/gwat.13439","url":null,"abstract":"<p>As readers of <i>Groundwater</i>, you have all faced a quizzical look when you told someone that you are a hydrogeologist. You have discovered that simply repeating the word—although, after all, it describes itself—is rarely sufficient. So, you have developed your own short explanation for what a hydrogeologist does and why our work is critical to society (one of my favorite is, “You know that water you drank yesterday? You're welcome.”). If you are in a position to hire an entry-level professional hydrogeologist, you are likely to share something else: a growing concern that there are not enough graduates to fill current demand, let alone future needs for our profession.</p><p>In summary, the future of hydrogeology is bright, but we are not producing enough MS-level trained students even to meet the current demand. In addition, universities are moving away from their role as the principal source of master's graduates and are unlikely to fill the future needs of industry or academia.</p><p>The good news is that there are several efforts in progress to address this problem. Some programs (e.g., the University of Neuchatel) have strong enrollment and continue to produce graduates. Other programs are coming together to offer multi-university degrees (e.g., the European ERASMUS+ cooperation project iNUX). In addition, there are efforts to redesign the university-based MS to deliver accessible in-person (e.g., the University of Arizona) or hybrid in-person/online programs (e.g., the University of Kansas and the University of Waterloo). There are also extra-university programs that focus on advanced topics (e.g., the Italian SYMPL School of Hydrogeologic Modeling). Finally, there are efforts to make videos and textbooks available for free to support educational programs (e.g., the micro-video project, the Groundwater Modeling for Decision Support Initiative, and the Groundwater Project).</p><p>We need all of these efforts to succeed if we hope to produce the workforce that will be needed in the future. However, there is a crucial first step that we need to complete as a community to ensure that future students are receiving the training that they need to enter the profession.</p><p>This is where we need your help as groundwater professionals.</p><p>Thank you for being part of the <i>Groundwater</i> community and I hope to work with you to advance our profession into the future!</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 5","pages":"662-663"},"PeriodicalIF":2.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-08-16DOI: 10.1111/gwat.13432
Mark Bakker, Bram Bot
{"title":"The Effective Vertical Anisotropy of Layered Aquifers","authors":"Mark Bakker, Bram Bot","doi":"10.1111/gwat.13432","DOIUrl":"10.1111/gwat.13432","url":null,"abstract":"<p>Many sedimentary aquifers consist of small layers of coarser and finer material. When groundwater flow in these aquifers is modeled, the hydraulic conductivity may be simulated as homogeneous but anisotropic throughout the aquifer. In practice, the anisotropy factor, the ratio of the horizontal divided by the vertical hydraulic conductivity, is often set to 10. Here, numerical experiments are conducted to determine the effective anisotropy of an aquifer consisting of 400 horizontal layers of which the homogeneous and isotropic hydraulic conductivity varies over two orders of magnitude. Groundwater flow is simulated to a partially penetrating canal and a partially penetrating well. Numerical experiments are conducted for 1000 random realizations of the 400 layers, by varying the sequence of the layers, not their conductivity. It is demonstrated that the effective anisotropy of the homogeneous model is a model parameter that depends on the flow field. For example, the effective anisotropy for flow to a partially penetrating canal differs from the effective anisotropy for flow to a partially penetrating well in an aquifer consisting of the exact same 400 layers. The effective anisotropy also depends on the sequence of the layers. The effective anisotropy values of the 1000 realizations range from roughly 5 to 50 for the considered situations. A factor of 10 represents a median value (a reasonable value to start model calibration for the conductivity variations considered here). The median is similar to the equivalent anisotropy, defined as the arithmetic mean of the hydraulic conductivities divided by the harmonic mean.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"68-75"},"PeriodicalIF":2.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-08-13DOI: 10.1111/gwat.13437
Karli M. Rogers, Jennifer B. Fair, Nathaniel P. Hitt, Karmann G. Kessler, Zachary A. Kelly, Martin Briggs
{"title":"Utility of an Instantaneous Salt Dilution Method for Measuring Streamflow in Headwater Streams","authors":"Karli M. Rogers, Jennifer B. Fair, Nathaniel P. Hitt, Karmann G. Kessler, Zachary A. Kelly, Martin Briggs","doi":"10.1111/gwat.13437","DOIUrl":"10.1111/gwat.13437","url":null,"abstract":"<p>Streamflow records are biased toward large streams and rivers, yet small headwater streams are often the focus of ecological research in response to climate change. Conventional flow measurement instruments such as acoustic Doppler velocimeters (ADVs) do not perform well during low-flow conditions in small streams, truncating the development of rating curves during critical baseflow conditions dominated by groundwater inflow. We revisited an instantaneous solute tracer injection method as an alternative to ADVs based on paired measurements to compare their precision, efficiency, and feasibility within headwater streams across a range of flow conditions. We show that the precision of discharge measurements using salt dilution by slug injection and ADV methods were comparable overall, but salt dilution was more precise during the lowest flows and required less time to implement. Often, headwater streams were at or below the depth threshold where ADV measurements could even be attempted and transects were complicated by coarse bed material and cobbles. We discuss the methodological benefits and limitations of salt dilution by slug injection and conclude that the method could facilitate a proliferation of streamflow observation across headwater stream networks that are highly undersampled compared to larger streams.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"80-92"},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13437","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}