{"title":"在监测设计中利用平流传输现象考虑传导性的不确定性。","authors":"Willem J. de Lange","doi":"10.1111/gwat.13467","DOIUrl":null,"url":null,"abstract":"<p>Engineering practice in monitoring design aims at the optimum number of observation wells needed to assess the growth of a contaminated volume groundwater, the plume. Available methodologies rely on a combination of a numerical groundwater transport model, GIS-techniques and an optimization technique and require a relative huge amount of data and computer resources. The method of advective transport phenomena enables to calculate the longitudinal and vertical growth of a contaminant plume along the flow path by simple analytic expressions using only three stochastic parameters, the log conductivity variance and the horizontal and vertical characteristic lengths, that together describe the heterogeneity of the aquifer. In previous work, the calculated plume growth has been verified in 12 large experiments all over the world. The method is used to investigate the relationship between uncertainty in the conductivity variation and the plume growth by calculation of the spreading of water particles in a vertical section along the traveled path. In a very heterogeneous aquifer, virtually all water particles spread forward about equally generating a limited forward growth compared to the traveled distance that is not sensitive to uncertainty in the conductivity. In a nearly homogenous aquifer, only a part of the water particles is spread forward, which is repeated at different depths along the traveled path causing significant uncertainty in the position and length of the plume growth. Therefore, an observation network should be designed more densely in a homogeneous aquifer than in a heterogeneous one. A calculation tool is provided.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 3","pages":"319-325"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13467","citationCount":"0","resultStr":"{\"title\":\"Using Advective Transport Phenomena to Account for Uncertainty of Conductivity in Monitoring Design\",\"authors\":\"Willem J. de Lange\",\"doi\":\"10.1111/gwat.13467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Engineering practice in monitoring design aims at the optimum number of observation wells needed to assess the growth of a contaminated volume groundwater, the plume. Available methodologies rely on a combination of a numerical groundwater transport model, GIS-techniques and an optimization technique and require a relative huge amount of data and computer resources. The method of advective transport phenomena enables to calculate the longitudinal and vertical growth of a contaminant plume along the flow path by simple analytic expressions using only three stochastic parameters, the log conductivity variance and the horizontal and vertical characteristic lengths, that together describe the heterogeneity of the aquifer. In previous work, the calculated plume growth has been verified in 12 large experiments all over the world. The method is used to investigate the relationship between uncertainty in the conductivity variation and the plume growth by calculation of the spreading of water particles in a vertical section along the traveled path. In a very heterogeneous aquifer, virtually all water particles spread forward about equally generating a limited forward growth compared to the traveled distance that is not sensitive to uncertainty in the conductivity. In a nearly homogenous aquifer, only a part of the water particles is spread forward, which is repeated at different depths along the traveled path causing significant uncertainty in the position and length of the plume growth. Therefore, an observation network should be designed more densely in a homogeneous aquifer than in a heterogeneous one. A calculation tool is provided.</p>\",\"PeriodicalId\":12866,\"journal\":{\"name\":\"Groundwater\",\"volume\":\"63 3\",\"pages\":\"319-325\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13467\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13467\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13467","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Using Advective Transport Phenomena to Account for Uncertainty of Conductivity in Monitoring Design
Engineering practice in monitoring design aims at the optimum number of observation wells needed to assess the growth of a contaminated volume groundwater, the plume. Available methodologies rely on a combination of a numerical groundwater transport model, GIS-techniques and an optimization technique and require a relative huge amount of data and computer resources. The method of advective transport phenomena enables to calculate the longitudinal and vertical growth of a contaminant plume along the flow path by simple analytic expressions using only three stochastic parameters, the log conductivity variance and the horizontal and vertical characteristic lengths, that together describe the heterogeneity of the aquifer. In previous work, the calculated plume growth has been verified in 12 large experiments all over the world. The method is used to investigate the relationship between uncertainty in the conductivity variation and the plume growth by calculation of the spreading of water particles in a vertical section along the traveled path. In a very heterogeneous aquifer, virtually all water particles spread forward about equally generating a limited forward growth compared to the traveled distance that is not sensitive to uncertainty in the conductivity. In a nearly homogenous aquifer, only a part of the water particles is spread forward, which is repeated at different depths along the traveled path causing significant uncertainty in the position and length of the plume growth. Therefore, an observation network should be designed more densely in a homogeneous aquifer than in a heterogeneous one. A calculation tool is provided.
期刊介绍:
Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.