Rachel A Matt, Renee S Martin, Andrew K Evans, Joel R Gever, Gabriel A Vargas, Mehrdad Shamloo, Anthony P Ford
{"title":"Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease.","authors":"Rachel A Matt, Renee S Martin, Andrew K Evans, Joel R Gever, Gabriel A Vargas, Mehrdad Shamloo, Anthony P Ford","doi":"10.1007/164_2023_677","DOIUrl":"10.1007/164_2023_677","url":null,"abstract":"<p><p>Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α<sub>1</sub>-AR, α<sub>2</sub>-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"555-616"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SLC26 Anion Transporters.","authors":"Eric R Geertsma, Dominik Oliver","doi":"10.1007/164_2023_698","DOIUrl":"10.1007/164_2023_698","url":null,"abstract":"<p><p>Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"319-360"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72014140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Burkhard Kleuser, Fabian Schumacher, Erich Gulbins
{"title":"New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism.","authors":"Burkhard Kleuser, Fabian Schumacher, Erich Gulbins","doi":"10.1007/164_2023_700","DOIUrl":"10.1007/164_2023_700","url":null,"abstract":"<p><p>Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"289-312"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71434218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simone Carneiro, Joschka T Müller, Olivia M Merkel
{"title":"Targeted Molecular Therapeutics for Pulmonary Diseases: Addressing the Need for Precise Drug Delivery.","authors":"Simone Carneiro, Joschka T Müller, Olivia M Merkel","doi":"10.1007/164_2023_703","DOIUrl":"10.1007/164_2023_703","url":null,"abstract":"<p><p>Respiratory diseases are a major concern in public health, impacting a large population worldwide. Despite the availability of therapies that alleviate symptoms, selectively addressing the critical points of pathopathways remains a major challenge. Innovative formulations designed for reaching these targets within the airways, enhanced selectivity, and prolonged therapeutic effects offer promising solutions. To provide insights into the specific medical requirements of chronic respiratory diseases, the initial focus of this chapter is directed on lung physiology, emphasizing the significance of lung barriers. Current treatments involving small molecules and the potential of gene therapy are also discussed. Additionally, we will explore targeting approaches, with a particular emphasis on nanoparticles, comparing targeted and non-targeted formulations for pulmonary administration. Finally, the potential of inhaled sphingolipids in the context of respiratory diseases is briefly discussed, highlighting their promising prospects in the field.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"313-328"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structures of Adrenoceptors.","authors":"Lukas Helfinger, Christopher G Tate","doi":"10.1007/164_2023_674","DOIUrl":"10.1007/164_2023_674","url":null,"abstract":"<p><p>The first structure of an adrenoceptor (AR), the human β<sub>2</sub>-adrenoceptor (hβ<sub>2</sub>AR) was published in 2007 and since then a total of 78 structures (up to June 2022) have been determined by X-ray crystallography and electron cryo-microscopy (cryo-EM) of all three βARs (β<sub>1</sub>, β<sub>2</sub> and β<sub>3</sub>) and four out of six αARs (α<sub>1B</sub>, α<sub>2A</sub>, α<sub>2B</sub>, α<sub>2C</sub>). The structures are in a number of different conformational states, including the inactive state bound to an antagonist, an intermediate state bound to agonist and active states bound to agonist and an intracellular transducer (G protein or arrestin) or transducer mimetic (nanobody). The structures identify molecular details of how ligands bind in the orthosteric binding pocket (OBP; 19 antagonists, 18 agonists) and also how three different small molecule allosteric modulators bind. The structures have been used to define the molecular details of receptor activation and also the molecular determinants for transducer coupling. This chapter will give a brief overview of the structures, receptor activation, a comparison across the different subfamilies and commonalities of ligand-receptor interactions.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"13-26"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10203494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Wu, Aaron R J Hutton, Anjali Kiran Pandya, Vandana B Patravale, Ryan F Donnelly
{"title":"Microneedle and Polymeric Films: Delivery of Proteins, Peptides and Nucleic Acids.","authors":"Yu Wu, Aaron R J Hutton, Anjali Kiran Pandya, Vandana B Patravale, Ryan F Donnelly","doi":"10.1007/164_2023_653","DOIUrl":"10.1007/164_2023_653","url":null,"abstract":"<p><p>In the last 20 years, protein, peptide and nucleic acid-based therapies have become the fastest growing sector in the pharmaceutical industry and play a vital role in disease therapy. However, the intrinsic sensitivity and large molecular sizes of biotherapeutics limit the available routes of administration. Currently, the main administration routes of biomacromolecules, such as parenteral, oral, pulmonary, nasal, rectal and buccal routes, each have their limitations. Several non-invasive strategies have been proposed to overcome these challenges. Researchers were particularly interested in microneedles (MNs) and polymeric films because of their less invasiveness, convenience and greater potential to preserve the bioactivity of biotherapeutics. By facilitating with MNs and polymeric films, biomacromolecules could provide significant benefits to patients suffering from various diseases such as cancer, diabetes, infectious and ocular diseases. However, before these devices can be used on patients, how to upscale MN manufacture in a cost-effective and timely manner, as well as the long-term safety of MN and polymeric film applications necessitates further investigation.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"93-111"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization of Nanocarriers and Drugs in Cells and Tissue.","authors":"Ulrike Alexiev, Eckart Rühl","doi":"10.1007/164_2023_684","DOIUrl":"10.1007/164_2023_684","url":null,"abstract":"<p><p>In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"153-189"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9974887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanomedicine - Immune System Interactions: Limitations and Opportunities for the Treatment of Cancer.","authors":"Sara Elsafy, Josbert Metselaar, Twan Lammers","doi":"10.1007/164_2023_685","DOIUrl":"10.1007/164_2023_685","url":null,"abstract":"<p><p>Nanoparticles interact with immune cells in many different ways. These interactions are crucially important for determining nanoparticles' ability to be used for cancer therapy. Traditionally, strategies such as PEGylation have been employed to reduce (the kinetics of) nanoparticle uptake by immune cells, to endow them with long circulation properties, and to enable them to exploit the Enhanced Permeability and Retention (EPR) effect to accumulate in tumors. More recently, with immunotherapy becoming an increasingly important cornerstone in the clinical management of cancer, ever more research efforts in academia and industry are focusing on specifically targeting immune cells with nanoparticles. In this chapter, we describe the barriers and opportunities of immune cell targeting with nanoparticles, and we discuss how nanoparticle-based drug delivery to specific immune cell populations in tumors as well as in secondary myeloid and lymphoid organs (such as bone marrow, lymph nodes, and spleen) can be leveraged to boost the efficacy of cancer immunotherapy.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"231-265"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9993809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roles of β-adrenoceptor Subtypes and Therapeutics in Human Cardiovascular Disease: Heart Failure, Tachyarrhythmias and Other Cardiovascular Disorders.","authors":"Yee Weng Wong, Haris Haqqani, Peter Molenaar","doi":"10.1007/164_2024_720","DOIUrl":"10.1007/164_2024_720","url":null,"abstract":"<p><p>β-Adrenoceptors (β-ARs) provide an important therapeutic target for the treatment of cardiovascular disease. Three β-ARs, β<sub>1</sub>-AR, β<sub>2</sub>-AR, β<sub>3</sub>-AR are localized to the human heart. Activation of β<sub>1</sub>-AR and β<sub>2</sub>-ARs increases heart rate, force of contraction (inotropy) and consequently cardiac output to meet physiological demand. However, in disease, chronic over-activation of β<sub>1</sub>-AR is responsible for the progression of disease (e.g. heart failure) mediated by pathological hypertrophy, adverse remodelling and premature cell death. Furthermore, activation of β<sub>1</sub>-AR is critical in the pathogenesis of cardiac arrhythmias while activation of β<sub>2</sub>-AR directly influences blood pressure haemostasis. There is an increasing awareness of the contribution of β<sub>2</sub>-AR in cardiovascular disease, particularly arrhythmia generation. All β-blockers used therapeutically to treat cardiovascular disease block β<sub>1</sub>-AR with variable blockade of β<sub>2</sub>-AR depending on relative affinity for β<sub>1</sub>-AR vs β<sub>2</sub>-AR. Since the introduction of β-blockers into clinical practice in 1965, β-blockers with different properties have been trialled, used and evaluated, leading to better understanding of their therapeutic effects and tolerability in various cardiovascular conditions. β-Blockers with the property of intrinsic sympathomimetic activity (ISA), i.e. β-blockers that also activate the receptor, were used in the past for post-treatment of myocardial infarction and had limited use in heart failure. The β-blocker carvedilol continues to intrigue due to numerous properties that differentiate it from other β-blockers and is used successfully in the treatment of heart failure. The discovery of β<sub>3</sub>-AR in human heart created interest in the role of β<sub>3</sub>-AR in heart failure but has not resulted in therapeutics at this stage.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"247-295"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adrenoceptors: A Focus on Psychiatric Disorders and Their Treatments.","authors":"S Clare Stanford, David J Heal","doi":"10.1007/164_2023_675","DOIUrl":"10.1007/164_2023_675","url":null,"abstract":"<p><p>Research into the involvement of adrenoceptor subtypes in the cause(s) of psychiatric disorders is particularly challenging. This is partly because of difficulties in developing animal models that recapitulate the human condition but also because no evidence for any causal links has emerged from studies of patients. These, and other obstacles, are outlined in this chapter. Nevertheless, many drugs that are used to treat psychiatric disorders bind to adrenoceptors to some extent. Direct or indirect modulation of the function of specific adrenoceptor subtypes mediates all or part of the therapeutic actions of drugs in various psychiatric disorders. On the other hand, interactions with central or peripheral adrenoceptors can also explain their side effects. This chapter discusses both aspects of the field, focusing on disorders that are prevalent: depression, schizophrenia, anxiety, attention-deficit hyperactivity disorder, binge-eating disorder, and substance use disorder. In so doing, we highlight some unanswered questions that need to be resolved before it will be feasible to explain how changes in the function of any adrenoceptor subtype affect mood and behavior in humans and other animals.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"507-554"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}