{"title":"Decrypting Glycosaminoglycan \"sulfation code\" with Computational Approaches.","authors":"Sergey A Samsonov, Mateusz P Marcisz","doi":"10.1007/164_2025_741","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs), linear anionic periodic polysaccharides, play pivotal roles in various biologically relevant processes within the extracellular matrix (ECM). These processes encompass cell development, proliferation, signaling, ECM assembly, coagulation, and angiogenesis. GAGs perform their functions through their interactions with specific protein partners, rendering them attractive targets for regenerative medicine and drug design. However, the molecular mechanisms governing protein-GAG interactions remain unclear. Classical structure determination techniques face significant challenges when dealing with protein-GAG complexes. This is due to GAGs' unique properties, including their extensive length, flexibility, periodicity, symmetry, multipose binding, and the high heterogeneity of their sulfation patterns constituting the \"sulfation code.\" Consequently, only a limited number of experimental protein-GAG structures have been elucidated. Hence, theoretical approaches are particularly promising in deciphering the code for understanding the structure-function relationship of these complex molecules. In this chapter, we focus on the particularities, challenges, and advances of computational methods such as molecular docking, molecular dynamics, and free-energy calculations when applied to GAG-containing systems. These computational approaches offer valuable insights into the enigmatic world of protein-GAG interactions, paving the way for their enhanced understanding and potential therapeutic applications.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2025_741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosaminoglycans (GAGs), linear anionic periodic polysaccharides, play pivotal roles in various biologically relevant processes within the extracellular matrix (ECM). These processes encompass cell development, proliferation, signaling, ECM assembly, coagulation, and angiogenesis. GAGs perform their functions through their interactions with specific protein partners, rendering them attractive targets for regenerative medicine and drug design. However, the molecular mechanisms governing protein-GAG interactions remain unclear. Classical structure determination techniques face significant challenges when dealing with protein-GAG complexes. This is due to GAGs' unique properties, including their extensive length, flexibility, periodicity, symmetry, multipose binding, and the high heterogeneity of their sulfation patterns constituting the "sulfation code." Consequently, only a limited number of experimental protein-GAG structures have been elucidated. Hence, theoretical approaches are particularly promising in deciphering the code for understanding the structure-function relationship of these complex molecules. In this chapter, we focus on the particularities, challenges, and advances of computational methods such as molecular docking, molecular dynamics, and free-energy calculations when applied to GAG-containing systems. These computational approaches offer valuable insights into the enigmatic world of protein-GAG interactions, paving the way for their enhanced understanding and potential therapeutic applications.
期刊介绍:
The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.