{"title":"Role of Antibody Glycosylation in Health, Disease, and Therapy.","authors":"Falk Nimmerjahn","doi":"10.1007/164_2025_744","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoglobulin G (IgG) antibodies are an essential component of humoral immunity protecting the host from recurrent infections. Among all antibody isotypes, IgG antibodies have a uniquely long half-life, can basically reach any tissue in the body, and have the ability to kill opsonized target cells, which has made them the molecule of choice for therapeutic interventions in cancer and autoimmunity. Moreover, IgG antibodies in the form of pooled serum IgG preparations from healthy donors are used to treat chronic inflammatory and autoimmune diseases, providing evidence that serum IgG antibodies can have an active immunomodulatory activity. Research over the last two decades has established that the single sugar moiety attached to each IgG heavy chain plays a very important role in modulating the pro- and anti-inflammatory activities of IgG. Moreover, specific sugar moieties such as sialic acid and galactose residues can serve as highly specific biomarkers for ongoing inflammatory processes. This chapter will summarize how different sugar residues in the IgG sugar moiety change upon inflammation and how such changes may translate to altered IgG function and hence maybe useful for optimizing or modulating the function of therapeutic antibodies.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2025_744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin G (IgG) antibodies are an essential component of humoral immunity protecting the host from recurrent infections. Among all antibody isotypes, IgG antibodies have a uniquely long half-life, can basically reach any tissue in the body, and have the ability to kill opsonized target cells, which has made them the molecule of choice for therapeutic interventions in cancer and autoimmunity. Moreover, IgG antibodies in the form of pooled serum IgG preparations from healthy donors are used to treat chronic inflammatory and autoimmune diseases, providing evidence that serum IgG antibodies can have an active immunomodulatory activity. Research over the last two decades has established that the single sugar moiety attached to each IgG heavy chain plays a very important role in modulating the pro- and anti-inflammatory activities of IgG. Moreover, specific sugar moieties such as sialic acid and galactose residues can serve as highly specific biomarkers for ongoing inflammatory processes. This chapter will summarize how different sugar residues in the IgG sugar moiety change upon inflammation and how such changes may translate to altered IgG function and hence maybe useful for optimizing or modulating the function of therapeutic antibodies.
期刊介绍:
The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.