Frontiers of Environmental Science & Engineering最新文献

筛选
英文 中文
Spatio-temporal characteristics of genotoxicity in the Yangtze River under the background of COVID-19 pandemic COVID-19 大流行背景下长江遗传毒性的时空特征
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-13 DOI: 10.1007/s11783-024-1900-8
Xinge Wang, Na Li, Yingnan Han, Xiao Li, Weixiao Qi, Jian Li, Kaifeng Rao, Zijian Wang, Yanjie Wei, Mei Ma
{"title":"Spatio-temporal characteristics of genotoxicity in the Yangtze River under the background of COVID-19 pandemic","authors":"Xinge Wang, Na Li, Yingnan Han, Xiao Li, Weixiao Qi, Jian Li, Kaifeng Rao, Zijian Wang, Yanjie Wei, Mei Ma","doi":"10.1007/s11783-024-1900-8","DOIUrl":"https://doi.org/10.1007/s11783-024-1900-8","url":null,"abstract":"<p>The global spread of viruses can lead to the release of large amounts of disinfectants or antiviral drugs into the water environment. The resulting disinfection byproducts (DBPs) and residual antiviral drugs, acting as genotoxic substances or their precursors, may pose risks to aquatic animals and drinking water sources; however, to date, no studies have analyzed the changes in genotoxicity in the Yangtze River before and after the epidemic. In the present study, water and sediment samples from the Yangtze River were collected during different seasons, just before and after the outbreak of COVID-19, and were assessed using the SOS/umu test (with and without liver S9). The results indicated that water samples exhibited more pronounced genotoxicity than did sediments, with direct genotoxicity being the primary factor. Additionally, there were significant regional differences, with notably greater genotoxicity observed in the upper Yangtze River than in the lower reaches before the COVID-19 epidemic. However, this trend was reversed six to ten months later, suggesting the accumulation of DBPs or antiviral drugs after the COVID-19 pandemic. Moreover, the risk quotient indicated that 65% of the water samples posed a high risk for <i>Paramecium caudatum</i>, whereas 71% of the samples posed a medium risk for <i>Danio rerio</i>, thereby representing a potential threat to the ecological security of the Yangtze River. In conclusion, this study, at the basin scale, revealed the impacts of COVID-19 on the Yangtze River, highlighting the need to prevent DBPs and pharmaceutical pollution during similar events in the future.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pollution characteristics and ecological risk assessment of glucocorticoids in the Jiangsu section of the Yangtze River Basin 长江流域江苏段糖皮质激素的污染特征与生态风险评估
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-13 DOI: 10.1007/s11783-024-1903-5
Lichao Tan, Keke Xu, Shengxin Zhang, Fukai Tang, Mingzhu Zhang, Feng Ge, Kegui Zhang
{"title":"Pollution characteristics and ecological risk assessment of glucocorticoids in the Jiangsu section of the Yangtze River Basin","authors":"Lichao Tan, Keke Xu, Shengxin Zhang, Fukai Tang, Mingzhu Zhang, Feng Ge, Kegui Zhang","doi":"10.1007/s11783-024-1903-5","DOIUrl":"https://doi.org/10.1007/s11783-024-1903-5","url":null,"abstract":"<p>Glucocorticoids, which are one of the most extensively used steroid hormones, are typical endocrine disruptors. In recent years, glucocorticoids have been widely detected in surface waters such as rivers and lakes, but there are relatively few studies focusing on their ecological risk assessment. In this study, the pollution characteristics of seven glucocorticoids were studied in the Jiangsu section of the Yangtze River Basin, and ecological risk assessments were performed using the risk quotient method. The results showed that seven glucocorticoids were detected at different levels at eight sampling sites. Among these glucocorticoids, prednisone had the highest value of 238.27 ng/L in the wet season, with pollution levels significantly higher than those reported in other areas. The ecological risk evaluation showed that prednisone, prednisolone, dexamethasone, and hydrocortisone acetate all had risk quotient values greater than 1 in the studied water environment, posing a high ecological risk. This study provides a scientific foundation for the in-depth study of the pollution characteristics and ecological risk of glucocorticoids in water bodies in the Jiangsu section of the Yangtze River Basin.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquatic photo-transformation and enhanced photoinduced toxicity of ionizable tetracycline antibiotics 可离子化四环素抗生素的水生光转化和光诱导毒性增强
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-11 DOI: 10.1007/s11783-024-1899-x
Linke Ge, Jinshuai Zheng, Crispin Halsall, Chang-Er Chen, Xuanyan Li, Shengkai Cao, Peng Zhang
{"title":"Aquatic photo-transformation and enhanced photoinduced toxicity of ionizable tetracycline antibiotics","authors":"Linke Ge, Jinshuai Zheng, Crispin Halsall, Chang-Er Chen, Xuanyan Li, Shengkai Cao, Peng Zhang","doi":"10.1007/s11783-024-1899-x","DOIUrl":"https://doi.org/10.1007/s11783-024-1899-x","url":null,"abstract":"<p>Most antibiotics contain ionizable groups that undergo acid-base dissociation giving rise to diverse dissociated forms in aquatic systems depending on the pH of the system. In sunlit surface waters, photochemical transformation plays a crucial role in determining the fate of antibiotics. This study presents a comprehensive examination of the photo-transformation degradation kinetics, pathways and photoinduced toxicity of three widely detected tetracyclines (TCs): tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC). Under simulated sunlight (<i>λ</i> &gt; 290 nm), their apparent photolysis followed pseudo-first-order kinetics, with rate constants significantly increasing from H<sub>2</sub>TCs<sup>0</sup> to TCs<sup>2−</sup>. Through competition kinetic experiments and matrix calculations, it was found that the anions HTCs<sup>−</sup> or TCs<sup>2−</sup> (pH ∼ 8–10) were more reactive toward hydroxyl radicals (•OH), while TCs<sup>2−</sup> (pH ∼ 10) reacted the fastest with singlet oxygen (<sup>1</sup>O<sub>2</sub>). Considering the dissociated species, the total environmental photo-transformation half-lives of TCs were determined, revealing a strong dependence on the water pH and seasonal variation in sunlight. Generally, apparent photolysis was the dominant photochemical process, followed by <sup>1</sup>O<sub>2</sub> and •OH oxidation. Different transformation pathways for the three reactions were determined based on the key photoproducts identified using HPLC-MS/MS. Toxicity tests and ECOSAR software calculations confirmed that the intermediates produced by the •OH and <sup>1</sup>O<sub>2</sub> photo-oxidation processes were more toxic than the parent compounds. These findings significantly enhance our understanding of the complex photochemical fate and associated risks of TCs in aqueous environments.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of nanozymes in problematic biofilm control: progress, challenges and prospects 纳米酶在问题生物膜控制中的应用:进展、挑战和前景
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-10 DOI: 10.1007/s11783-024-1896-0
Junzheng Zhang, Tong Dou, Yun Shen, Wenrui Wang, Luokai Wang, Xuanhao Wu, Meng Zhang, Dongsheng Wang, Pingfeng Yu
{"title":"Application of nanozymes in problematic biofilm control: progress, challenges and prospects","authors":"Junzheng Zhang, Tong Dou, Yun Shen, Wenrui Wang, Luokai Wang, Xuanhao Wu, Meng Zhang, Dongsheng Wang, Pingfeng Yu","doi":"10.1007/s11783-024-1896-0","DOIUrl":"https://doi.org/10.1007/s11783-024-1896-0","url":null,"abstract":"<p>Current microbial control strategies face challenges in keeping up with the escalation of microbial problems due to the presence of biofilms. Therefore, there is an urgent need to develop effective and robust strategies to control problematic biofilms in water treatment and reuse systems. Nanozymes, which have intrinsic biocatalytic activity and broad antibacterial spectra, hold promise for controlling resilient biofilms. This review summarizes the milestones of nanozyme studies and their applications as antibiofilm agents. The mechanisms behind the antibacterial, quorum quenching, and depolymerizing properties of nanozymes with different enzyme activities are discussed. Notably, the surface and composition of nanozymes are crucial for their efficacy in biofilm control; thus, rationally designed nanozymes can increase their effectiveness. Additionally, the challenges of nanozymes as antibiofilm agents in realistic scenarios are investigated along with proposed strategies to overcome these challenges. Prospects of nanozyme-based biofilm control, such as machine learning-assisted nanozyme design, are also discussed. Overall, this review highlights the potential of nanozymes as antibiofilm agents and provides insights into the future design of nanozymes for biofilm control.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional electro-Fenton system with iron-carbon packing as a particle electrode for nitrobenzene wastewater treatment 以铁碳填料作为颗粒电极的三维电-芬顿系统用于硝基苯废水处理
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-10 DOI: 10.1007/s11783-024-1898-y
Baoshan Wang, Peiyu Zhao, Xiaona Zhang, Yang Zhang, Yingming Liu
{"title":"Three-dimensional electro-Fenton system with iron-carbon packing as a particle electrode for nitrobenzene wastewater treatment","authors":"Baoshan Wang, Peiyu Zhao, Xiaona Zhang, Yang Zhang, Yingming Liu","doi":"10.1007/s11783-024-1898-y","DOIUrl":"https://doi.org/10.1007/s11783-024-1898-y","url":null,"abstract":"<p>Traditional Fenton oxidation is an effective method for reducing pollutants that are difficult to degrade. Owing to the large amounts of Fe(II), acids, and alkalis added in the reaction, large amounts of Fenton sludge are produced, increasing treatment costs and restricting the method’s application. In this study, we developed a three-dimensional electro-Fenton system by adding iron-carbon filler and investigated the effects of different electrolytic cell structure arrangements, particle electrode dosages, sponge iron (SI) to granular activated carbon (GAC) dosage ratios, current densities, H<sub>2</sub>O<sub>2</sub> dosages, and cathodic aeration on nitrobenzene (NB) wastewater treatment. The optimal system conditions were a particle electrode dosage of 100 g/L, SI:GAC mass ratio of 3:1, current density of 30 mA/cm<sup>2</sup>, H<sub>2</sub>O<sub>2</sub> dosage of 50 mmol/L, cathodic aeration of 0.8 L/min, and hydraulic retention time of 120 min. The average NB removal rate and chemical oxygen demand reached 67.38%±1.05% and 70.60%±1.15%, respectively, for which the increase in Fenton sludge was 891.8 mg/L. Different from the traditional Fenton process, additional Fe(II) was not required in the process used herein, reducing iron sludge accumulation and lowering the operating costs of using Fenton sludge as a hazardous waste treatment. In addition, the process applied in this study was able to reduce the chemical amounts used and increase the treatment efficiency. The reductions in sludge treatment costs and secondary pollutants make the proposed process an efficient and sustainable alternative for treating NB wastewater.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in summertime ozone in Nanjing between 2015 and 2020: roles of meteorology, radical chain length and ozone production efficiency 2015-2020 年间南京夏季臭氧的变化:气象、自由基链长度和臭氧生产效率的作用
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-06 DOI: 10.1007/s11783-024-1897-z
Lin Li, Jingyi Li, Momei Qin, Xiaodong Xie, Jianlin Hu, Yuqiang Zhang
{"title":"Variations in summertime ozone in Nanjing between 2015 and 2020: roles of meteorology, radical chain length and ozone production efficiency","authors":"Lin Li, Jingyi Li, Momei Qin, Xiaodong Xie, Jianlin Hu, Yuqiang Zhang","doi":"10.1007/s11783-024-1897-z","DOIUrl":"https://doi.org/10.1007/s11783-024-1897-z","url":null,"abstract":"<p>Changes in ozone (O<sub>3</sub>) can be evaluated to inform policy effectiveness and develop reasonable emissions reduction measures. This study investigated the causes of summertime maximum daily 8-h average (MDA8) O<sub>3</sub> variation between 2015 and 2020 in Nanjing, China, a megacity in the Yangtze River Delta (YRD) region, from the perspective of meteorological conditions and anthropogenic emissions of O<sub>3</sub> precursors (VOCs and No<sub><i>x</i></sub>). Compared with 2015, the observed MDA8 O<sub>3</sub> decreased by 19.1 µg/m<sup>3</sup> in August 2020. The indirect and indirect impacts of meteorological conditions contributed 44% of the decline, with temperature, relative humidity, and wind playing important roles in the O<sub>3</sub> variation. The O<sub>3</sub> drop by 10.7 µg/m<sup>3</sup> (56% of the total decrease) may have been due to the decreases in anthropogenic emissions of VOCs and NO<sub><i>x</i></sub> by 7.8% and 11.7%, respectively. The longer hydroxyl (OH) radical chain length and higher ozone production efficiency (OPE) indicated that the reduction of anthropogenic emissions accelerated the RO<sub><i>x</i></sub> (RO<sub><i>x</i></sub> = OH + HO<sub>2</sub> + RO<sub>2</sub>) and NO<sub><i>x</i></sub> cycles in O<sub>3</sub> production, making O<sub>3</sub> more sensitive to NO<sub><i>x</i></sub>. This corresponded to the O<sub>3</sub> formation shifting from a VOC-limited regime in 2015 to a transition regime in 2020 and O<sub>3</sub> decrease with anthropogenic emission reduction. Hence, the joint control of O<sub>3</sub> precursor emissions can effectively mitigate O<sub>3</sub> pollution in Nanjing.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binding interaction of typical emerging contaminants on Gobiocypris rarus transthyretin: an in vitro and in silico study 典型新兴污染物与 Gobiocypris rarus 转甲状腺素的结合相互作用:体外和硅学研究
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-09-03 DOI: 10.1007/s11783-024-1895-1
Xiangqiao Li, Huihui Liu, Songshan Zhao, Peter Watson, Xianhai Yang
{"title":"Binding interaction of typical emerging contaminants on Gobiocypris rarus transthyretin: an in vitro and in silico study","authors":"Xiangqiao Li, Huihui Liu, Songshan Zhao, Peter Watson, Xianhai Yang","doi":"10.1007/s11783-024-1895-1","DOIUrl":"https://doi.org/10.1007/s11783-024-1895-1","url":null,"abstract":"<p>Emerging contaminants (ECs) have drawn global concern, and the endocrine disrupting chemicals is one of the highly interested ECs categories. However, numerous ECs lacks the basic information about whether they can disturb the endocrine related biomacromolecules or elicit endocrine related detrimental effects on organism. In this study, the potential binding affinity and underlying binding mechanism between 29 ECs from 7 chemical groups and <i>Gobiocypris rarus</i> transthyretin (CrmTTR) are investigated and probed using <i>in vitro</i> and <i>in silico</i> methods. The experimental results demonstrate that 14 selected ECs (11 disinfection byproducts, 1 pharmaceuticals and personal care product, 1 alkylphenol, 1 perfluoroalkyl and polyfluoroalkyl substance) are potential CrmTTR binders. The CrmTTR binding affinity of three ECs (i.e., 2,6-diiodo-4-nitrophenol (log<i>RP</i>(T<sub>4</sub>) = 0.678 ± 0.198), 2-bromo-6-chloro-4-nitrophenol (log<i>RP</i>(T<sub>4</sub>) = 0.399 ± 0.0908), tetrachloro-1,4-benzoquinone (log<i>RP</i>(T<sub>4</sub>) = 0.272 ± 0.0655)) were higher than that of 3,3′,5,5′-tetraiodo-L-thyronine, highlighting that more work should be performed to reveal their potential endocrine related harmful effects on <i>Gobiocypris rarus</i>. Molecular docking results imply that hydrogen bond and hydrophobic interactions are the dominated non-covalent interactions between the active disruptors and CrmTTR. The optimum mechanism-based (for CrmTTR), and high throughput screening (for CrmTTR, little skate-TTR, seabream-TTR, and human-TTR) binary classification models are developed using three machine learning algorithms, and all the models have good classification performance. To facilitate the use of developed high throughput screening models, a tool named “TTR Profiler” is derived, which could be employed to determine whether a given substance is a potential CrmTTR, little skate-TTR, seabream-TTR, or human-TTR disruptor or not.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal characteristics and Monte Carlo simulation-based human health risk of heavy metals in soils from a typical coal-mining city in eastern China 中国东部典型煤矿城市土壤中重金属的时空特征和基于蒙特卡罗模拟的人体健康风险
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-08-25 DOI: 10.1007/s11783-024-1882-6
Xiangyue Pan, Xinrui Weng, Lingyu Zhang, Fang Chen, Hui Li, Yunhua Zhang
{"title":"Spatiotemporal characteristics and Monte Carlo simulation-based human health risk of heavy metals in soils from a typical coal-mining city in eastern China","authors":"Xiangyue Pan, Xinrui Weng, Lingyu Zhang, Fang Chen, Hui Li, Yunhua Zhang","doi":"10.1007/s11783-024-1882-6","DOIUrl":"https://doi.org/10.1007/s11783-024-1882-6","url":null,"abstract":"<p>Mining activities typically discharge considerable amounts of heavy metals into the environment, raising concerns about soil metal pollution, environmental security, and human well-being. Therefore, a systematic regional-scale investigation of soil heavy metal pollution in mining areas is necessary for soil management. In this study, 5817 soil samples from the Huainan coal mining area collected for studies conducted from 2000 to 2021 were compiled to quantify the pollution level and spatiotemporal variation of heavy metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Ni, and Mn). The associated ecological health risk of heavy metals in soil was assessed using the Hakanson ecological hazard index, Monte Carlo simulation in conjunction with the total hazard quotient, and the hazard index. Cd was the top contaminant, followed by Hg. In terms of spatial distribution, heavy metal contamination was more severe in the eastern area of Fengtai and Datong districts, because these districts of Anhui Province are significant industrial regions. In addition, the results of the Monte Carlo evaluation of human health risks showed that the total noncarcinogenic risk of heavy metals in soil is below the acceptable level, while the carcinogenic risk was 5.97% for adults and 15.53% for children. As accounted for 57.4% of noncarcinogenic risk, Cr contributed 36.1% of carcinogenic risk. Compared with adults, children are more vulnerable to the carcinogenic and noncarcinogenic risks posed by heavy metals, with oral consumption being the primary exposure route. This research can provide useful details for protecting the environment and managing soil in a coal mining area.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics in nanoplastic research: a spotlight on aquatic life 纳米塑料研究中的多组学:聚焦水生生物
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-08-10 DOI: 10.1007/s11783-024-1893-3
Mohamed Helal, Min Liu, Honghong Chen, Mingliang Fang, Wenhui Qiu, Frank Kjeldsen, Knut Erik Tollefsen, Vengatesen Thiyagarajan, Henrik Holbech, Elvis Genbo Xu
{"title":"Multi-omics in nanoplastic research: a spotlight on aquatic life","authors":"Mohamed Helal, Min Liu, Honghong Chen, Mingliang Fang, Wenhui Qiu, Frank Kjeldsen, Knut Erik Tollefsen, Vengatesen Thiyagarajan, Henrik Holbech, Elvis Genbo Xu","doi":"10.1007/s11783-024-1893-3","DOIUrl":"https://doi.org/10.1007/s11783-024-1893-3","url":null,"abstract":"<p>Amidst increasing concerns about plastic pollution’s impacts on ecology and health, nanoplastics are gaining global recognition as emerging environmental hazards. This review aimed to examine the complex molecular consequences and underlying fundamental toxicity mechanisms reported from the exposure of diverse aquatic organisms to nanoplastics. Through the comprehensive examination of transcriptomics, proteomics, and metabolomics studies, we explored the intricate toxicodynamics of nanoplastics in aquatic species. The review raised essential questions about the consistency of findings across different omics approaches, the value of combining these omics tools to understand better and predict ecotoxicity, and the potential differences in molecular responses between species. By amalgamating insights from 37 omics studies (transcriptome 22, proteome six, and metabolome nine) published from 2013 to 2023, the review uncovered both shared and distinct toxic effects and mechanisms in which nanoplastics can affect aquatic life, and recommendations were provided for advancing omics-based research on nanoplastic pollution. This comprehensive review illuminates the nuanced connections between nanoplastic exposure and aquatic ecosystems, offering crucial insights into the complex mechanisms that may drive toxicity in aquatic environments.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of persulfate-based advanced oxidation system for decontaminating organic wastewater via non-radical regime 基于过硫酸盐的高级氧化系统通过非辐射机制净化有机废水综述
IF 6.4 2区 环境科学与生态学
Frontiers of Environmental Science & Engineering Pub Date : 2024-08-10 DOI: 10.1007/s11783-024-1894-2
Yunxin Huang, Shouyan Zhao, Keyu Chen, Baocheng Huang, Rencun Jin
{"title":"A review of persulfate-based advanced oxidation system for decontaminating organic wastewater via non-radical regime","authors":"Yunxin Huang, Shouyan Zhao, Keyu Chen, Baocheng Huang, Rencun Jin","doi":"10.1007/s11783-024-1894-2","DOIUrl":"https://doi.org/10.1007/s11783-024-1894-2","url":null,"abstract":"<p>The large amount of refractory organic wastewater produced from industry and agriculture sectors poses a significant threat to both water ecosystems and human health, necessitating the exploration of cost-efficient and efficacious removal techniques. Persulfate, when activated by various catalysts, can produce oxidative species, demonstrating promising potential in remediating organic wastewater. In recent years, numerous studies have unveiled that persulfate can be readily decomposed into nonradicals, which exhibits high selectivity toward pollutants and robust performance in complex wastewater environments. However, the challenges in identifying non-radicals and the unclear catalytic mechanism hinder its further application. This paper critically reviews the research progress on non-radical oxidation in persulfate-based heterogeneous catalytic system. The main advancements and existing challenges in three non-radical oxidation pathways, i.e., singlet oxygen, electron transfer, and high-valent metal oxides, are summarized, and the key factors influencing the production of nonradicals are elaborated. The engineering aspects of non-radical oxidation system are further discussed, and the future prospects of this technology in wastewater treatment are envisaged. This review aims to bridge the knowledge gaps between current research and future requirements.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信