Functional Composites and Structures最新文献

筛选
英文 中文
Advanced doping method for highly conductive CNT fibers with enhanced thermal stability 采用先进的掺杂方法生产热稳定性更高的高导电性 CNT 纤维
IF 2.8
Functional Composites and Structures Pub Date : 2024-09-17 DOI: 10.1088/2631-6331/ad78a2
Minseouk Choi, Young Shik Cho, Kyunbae Lee, Yeonsu Jung, Kyung Tae Park and Taehoon Kim
{"title":"Advanced doping method for highly conductive CNT fibers with enhanced thermal stability","authors":"Minseouk Choi, Young Shik Cho, Kyunbae Lee, Yeonsu Jung, Kyung Tae Park and Taehoon Kim","doi":"10.1088/2631-6331/ad78a2","DOIUrl":"https://doi.org/10.1088/2631-6331/ad78a2","url":null,"abstract":"Due to the inherent limitations of metals, such as their poor performance at high temperatures caused by thermo-oxidation and expansion, carbon nanotube yarns (CNTFs) have emerged as promising alternatives because of their high electrical conductivity and thermal stability. Doping of CNTFs has been widely studied because it significantly increases electrical conductivity through a simple process. Despite these advantages, doped CNTFs are not suitable for extreme environments, especially high temperatures. This is due to the weak interaction between dopants and CNTFs, along with the low thermal stability of the dopants themselves, leading to dopant decomposition and oxidation at high temperatures. Herein, we present doped CNTFs that are covalently functionalized with a nitrogen compound composed of imide and nitro groups, which are renowned for good thermal stability. The electron-withdrawing effect of this nitrogen compound polarizes the CNTFs to a positive charge, inducing p-type doping effects and enhancing electrical conductivity from 2989 to 4008 S cm−1. The strong covalent bonding between the nitrogen compound and CNTFs, along with the thermal stability of the dopants, ensures that the electrical conductivity of our doped CNTFs is maintained even after annealing at 300 °C for 12 h. Our proposed doped CNTFs offer a guideline for expanding the practical applications of doped CNTFs to a wider range of high-temperature environments.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"1138 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simplified predictive model for the compression behavior of self-healing microcapsules using an empirical coefficient 使用经验系数的自愈合微胶囊压缩行为简化预测模型
IF 2.8
Functional Composites and Structures Pub Date : 2024-09-16 DOI: 10.1088/2631-6331/ad7225
Jaeho Cha and Sungho Yoon
{"title":"A simplified predictive model for the compression behavior of self-healing microcapsules using an empirical coefficient","authors":"Jaeho Cha and Sungho Yoon","doi":"10.1088/2631-6331/ad7225","DOIUrl":"https://doi.org/10.1088/2631-6331/ad7225","url":null,"abstract":"This study is dedicated to predicting the compression behavior of microcapsules, a key aspect in self-healing applications. Understanding the compression behavior of microcapsules, mainly due to their liquid cores, is a complex task. Equally challenging is the evaluation of the shell properties. We aimed to streamline this prediction process by introducing the empirical coefficient Ccore, which accounts for core influence. We conducted experiments on microcapsules with MUF (Melamine–Urea–Formaldehyde) shells, compressing them between two plates and recording their responses to load and displacement. The empirical coefficient, influenced by capsule size, shell properties, and core volume fraction, was then analyzed in terms of microcapsule size and Young’s modulus. The research results showed that as the diameter of microcapsule and Young’s modulus of the shell increased, the Ccore also increased. This relationship could be represented in a three-dimensional surface. These findings could significantly contribute to estimating shell properties and modeling matrices with dispersed microcapsules.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"14 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of multi droplet-based electricity generator system for energy harvesting improvement from a single droplet 开发基于多液滴的发电系统,提高单液滴的能量收集能力
IF 2.8
Functional Composites and Structures Pub Date : 2024-08-29 DOI: 10.1088/2631-6331/ad709b
Girak Gwon, Dongik Kam, Sunmin Jang, Moonwoo La, Dongwhi Choi
{"title":"Development of multi droplet-based electricity generator system for energy harvesting improvement from a single droplet","authors":"Girak Gwon, Dongik Kam, Sunmin Jang, Moonwoo La, Dongwhi Choi","doi":"10.1088/2631-6331/ad709b","DOIUrl":"https://doi.org/10.1088/2631-6331/ad709b","url":null,"abstract":"Due to high output performance, the droplet-based electricity generator (DEG) is garnering attention as a promising alternative power source for small electronic devices. Accordingly, to utilize the DEG as a power source, the efforts to boost the output have focused on methods to modify material modification and introduce surface structure. However, the behavior feature that the reconfigured droplet falls after the DEG operation leaves room for one more droplet energy harvesting from a single droplet. Here, a multi DEG system (MDEG) constructed with multiple DEG units is proposed to harvest more energy from a single droplet. The continuous movement of a water droplet is realized through the inclined stair structure of the MDEG, resulting in electrical energy generation from a single water droplet as many times as it falls. In particular, 2-step MDEG consisting of two DEG units can have 45% higher performance than a single DEG. Therefore, this study implies a contribution to the development of DEGs by considering the droplet dynamics, which has been overlooked in existing DEG studies.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"39 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of the water absorption on hybrid carbon fibre prepreg waste composite and its impact on flexural performance 混合碳纤维预浸料废料复合材料吸水性测量及其对弯曲性能的影响
IF 2.8
Functional Composites and Structures Pub Date : 2024-08-22 DOI: 10.1088/2631-6331/ad6e51
Ahmad Ashari Ahmad Shukri, Norlin Nosbi, Mohd Firdaus Omar, Siti Shuhadah Md Saleh, Muhammad Bisyrul Hafi Othman, Norazwana Mohd Najib, Wan Fahmin Faiz Wan Ali
{"title":"Measurement of the water absorption on hybrid carbon fibre prepreg waste composite and its impact on flexural performance","authors":"Ahmad Ashari Ahmad Shukri, Norlin Nosbi, Mohd Firdaus Omar, Siti Shuhadah Md Saleh, Muhammad Bisyrul Hafi Othman, Norazwana Mohd Najib, Wan Fahmin Faiz Wan Ali","doi":"10.1088/2631-6331/ad6e51","DOIUrl":"https://doi.org/10.1088/2631-6331/ad6e51","url":null,"abstract":"Carbon fibre (CF) prepreg, essential to composites and aircraft, generates waste known as carbon fibre prepreg waste (CFW) due to its limited lifespan. This study investigates recycling CFW through hybridization, milling it into powder and mixing it with epoxy resin and alumina to form hybrid composites. Using Minitab software, optimal compositions were determined from 13 and 20 experimental designs for CFW-EP and CFW-EP-AL, respectively. Results identified 2.5 wt% CFW and 97.5 wt% epoxy resin as optimal for CFW-EP, and 2.5 wt% CFW, 2.5 wt% alumina, and 95 wt% epoxy resin as optimal for CFW-EP-AL. Samples of epoxy resin polymer (EP), carbon prepreg waste reinforced composite (CFW-EP), and carbon prepreg waste reinforced with alumina composite (CFW-EP-AL) were fabricated and tested for moisture absorption and flexural strength, revealing noticeable deterioration over time. These findings highlight the importance of compositional analysis in developing sustainable materials with optimal flexural strength for various applications.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"29 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of the tensile behaviour of biaxial knitted fabrics produced based on rib structure using a macro constitutive model 使用宏观构成模型模拟基于罗纹结构生产的双轴针织物的拉伸行为
IF 2.8
Functional Composites and Structures Pub Date : 2024-08-14 DOI: 10.1088/2631-6331/ad68c0
Mohammad Javad Abghary, Reza Jafari Nedoushan, Hossein Hasani, Woong-Ryeol Yu
{"title":"Simulation of the tensile behaviour of biaxial knitted fabrics produced based on rib structure using a macro constitutive model","authors":"Mohammad Javad Abghary, Reza Jafari Nedoushan, Hossein Hasani, Woong-Ryeol Yu","doi":"10.1088/2631-6331/ad68c0","DOIUrl":"https://doi.org/10.1088/2631-6331/ad68c0","url":null,"abstract":"This study presents a macro-scale constitutive model to simulate the tensile behaviour of biaxial weft knitted fabrics produced based on a 1 × 1 rib structure. Fabrics were produced using polyester yarns as stitch yarns and nylon yarns as straight yarns in a modern flat knitting machine. Stress–strain curves of 1 × 1 rib structure and corresponding biaxial knitted fabric were measured in three different directions (course, wale and 45 degrees) on a tensile tester. Based on extracted results, a constitutive equation was proposed for macro modelling of biaxial knitted fabrics. The stiffness matrix of the biaxial knitted fabrics was assumed to be a combination of the stiffness matrix of 1 × 1 rib and reinforcement yarns. A UMAT subroutine was provided to implement the constitutive behaviour in Abaqus software. To evaluate the accuracy of the proposed model, fabric tensile behaviour in 22.5° and 67.5° directions were simulated and compared with experimental results. The results showed that the macro model can successfully predict the tensile behaviour of the biaxial weft knitted fabric in different directions.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"25 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced compressive strength of graphene strengthened copper (G/Cu) composites 增强石墨烯强化铜 (G/Cu) 复合材料的抗压强度
IF 2.8
Functional Composites and Structures Pub Date : 2024-08-14 DOI: 10.1088/2631-6331/ad6954
Deniz Cakir, Omer R Caylan, Erhan Gurpinar, Ogulcan Akgul, H Onat Tugrul, Elif Okay, Eren Atli, Benat Kockar, Goknur Cambaz Buke
{"title":"Enhanced compressive strength of graphene strengthened copper (G/Cu) composites","authors":"Deniz Cakir, Omer R Caylan, Erhan Gurpinar, Ogulcan Akgul, H Onat Tugrul, Elif Okay, Eren Atli, Benat Kockar, Goknur Cambaz Buke","doi":"10.1088/2631-6331/ad6954","DOIUrl":"https://doi.org/10.1088/2631-6331/ad6954","url":null,"abstract":"This study explores the compressive mechanical properties of copper composites reinforced with graphene. Graphene was synthesized on copper powders via plasma-enhanced chemical vapor deposition. Multilayer graphene formation has been substantiated by Raman analysis. Graphene-coated copper (G/Cu) powders were then subjected to pressing and sintering to fabricate G/Cu composites. The mechanical properties of G/Cu composites were investigated under compression from room temperature up to 400 °C in air. The results demonstrated a substantial improvement in the mechanical properties of G/Cu composites compared to monolithic copper. Specifically, the yield strength in compression of the G/Cu composite increased by 203% at room temperature and by 190% at 200 °C. At 400 °C, the yield strength enhancement exceeded 370%. Microstructural analysis suggests that the observed enhancements in G/Cu composites can be attributed to reduced porosity, smaller grain size, and inhibited dislocation motion at the increased grain boundary area (due to refined grain size) and graphene-copper interfaces.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"13 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conductive graphene-based coagulated composites for electronic printing applications 基于石墨烯的导电凝固复合材料在电子印刷中的应用
IF 2.8
Functional Composites and Structures Pub Date : 2024-08-05 DOI: 10.1088/2631-6331/ad68bf
Manoj Aravind Sankar and Prasanna R
{"title":"Conductive graphene-based coagulated composites for electronic printing applications","authors":"Manoj Aravind Sankar and Prasanna R","doi":"10.1088/2631-6331/ad68bf","DOIUrl":"https://doi.org/10.1088/2631-6331/ad68bf","url":null,"abstract":"Graphene is gaining significance in applications such as sensors, antennas, photonics and spintronics. In particular, it is suitable for printing components and circuits affording the properties of high conductivity alongside flexibility, elasticity and wearability. For this application, graphene is typically customised into a fluidic form—ink or paint. This paper reports a novel, economical, scalable methodology for synthesising electrically conductive graphene-based coagulated composite that could be utilised in the above-mentioned applications. Composites are prepared from graphene powder/ink and screen-printing ink (GP–SPI and GI–SPI, respectively) at different mass ratios, and the optimal composition is identified by brush coating on paper in the form of rectangular strips. As a proof of concept, at optimum mass ratios, the GP–SPI and GI–SPI composites exhibit electrical conductivities ranging 0.068–0.702 mS m−1 and 0.0303–0.1746 μS m−1, in order. The as-prepared conductive composites are then screen-printed onto a square with an area of 1 cm2 on ceramic, FR4, glass, paper, polyester and wood substrates. The coagulated GP–SPI and GI–SPI composites are compatible with all these substrates and yield a conductive coating, demonstrating their suitability in multifaceted applications. Furthermore, the method proposed herein eliminates the need for rare/precious expensive materials, state-of-the art equipment, highly skilled personnel and costs associated with the same, thereby broadening the avenues for low-cost, fluidic graphene-based functional composites.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"139 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical and structural performances of carbon and glass fiber-reinforced structural supercapacitor composite at elevated temperatures 碳纤维和玻璃纤维增强结构超级电容器复合材料在高温下的电化学和结构性能
IF 2.8
Functional Composites and Structures Pub Date : 2024-07-10 DOI: 10.1088/2631-6331/ad5e32
Jayani Anurangi, Madhubhashitha Herath, Dona T L Galhena and Jayantha Epaarachchi
{"title":"Electrochemical and structural performances of carbon and glass fiber-reinforced structural supercapacitor composite at elevated temperatures","authors":"Jayani Anurangi, Madhubhashitha Herath, Dona T L Galhena and Jayantha Epaarachchi","doi":"10.1088/2631-6331/ad5e32","DOIUrl":"https://doi.org/10.1088/2631-6331/ad5e32","url":null,"abstract":"The structural supercapacitor can store electrical energy and withstand structural loads while saving substantial weight in many structural applications. This study investigated the development of a structural supercapacitor with a fiber-reinforced polymer composite system and explored the operating temperature’s influence on its performance. The electrochemical and mechanical properties of structural supercapacitors beyond the ambient temperature have not yet been studied; hence, evaluating parameters such as specific capacitance, energy density, cycle life, and structural performance at elevated temperatures are highly desired. We have designed and manufactured single and parallelly connected multilayer structural supercapacitor composites in this research. Carbon fibers were used as a bifunctional component, acting both as a current collector while acting as a mechanical reinforcement. In addition, glass fibers were added as the separator which is also acting as an integral reinforcement. The electrochemical and mechanical behavior of structural supercapacitors at elevated temperatures up to 85 °C were experimentally investigated. The test results revealed that at room temperature, the developed double-cell structural supercapacitor, which demonstrated an area-specific capacitance of 1.16 mF cm−2 and energy density of 0.36 mWh cm−2 at 0.24 mA cm−2, which are comparable to current achievements in structural supercapacitor research. The structural supercapacitor’s tensile, flexural, and compression strengths were measured as 109.5 MPa, 47.0 MPa, and 50.4 MPa, respectively. The specific capacitance and energy density reached 2.58 mF cm−2 and 0.81 mWh cm−2, while tensile, flexural, and compression strengths were reduced to 70.9 MPa, 14.2 MPa, and 8.8 MPa, respectively, at 85 °C. These findings provide new comprehensive knowledge on structural supercapacitor devices suitable for applications operating within a temperature range from ambient conditions to 85 °C.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"24 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of solid-state hybrid capacitor using carbon nanotube film as current collector 利用碳纳米管薄膜作为电流收集器开发固态混合电容器
IF 2.8
Functional Composites and Structures Pub Date : 2024-07-04 DOI: 10.1088/2631-6331/ad5b4b
Dong Uk Woo, Young Jin Park, Jae Young Cheon, Kyunbae Lee, Yeonsu Jung, Patrick Joohyun Kim and Taehoon Kim
{"title":"Development of solid-state hybrid capacitor using carbon nanotube film as current collector","authors":"Dong Uk Woo, Young Jin Park, Jae Young Cheon, Kyunbae Lee, Yeonsu Jung, Patrick Joohyun Kim and Taehoon Kim","doi":"10.1088/2631-6331/ad5b4b","DOIUrl":"https://doi.org/10.1088/2631-6331/ad5b4b","url":null,"abstract":"Structural energy-storage devices are receiving considerable attention because they can simultaneously store electrical energy and provide structural support, thereby offering high volumetric and gravimetric capacities. Although carbon fiber–based materials have been the most popular choice for current collectors, their conductivity and specific surface area are relatively low; this limits the ability to load other active materials on to the current collector. Carbon nanotube (CNT) fiber is a promising alternative for lightweight structural materials because it has a density of less than 1 g cm−3 as well as high strength and electrical conductivity. In this study, we produced a light, strong, and porous CNT film (CNTF) via direct spinning for use as a current collector. The CNTF exhibited a high specific strength compared with Al foil. We also created an activated carbon–lithium titanium oxide hybrid capacitor with the CNTF current collector, which achieved a capacity similar to that of a capacitor having an Al current collector. Furthermore, a planar pouch cell created using a solid polymer electrolyte achieved a capacity of 74.1 mAh g−1, which is comparable to that of coin cells. Thus, our findings highlight the feasibility of CNTF as a material for current collectors and provide a foundation to develop manufacturing processes for structural batteries.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"51 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineering 用于骨组织工程的离心纺丝羟基磷灰石/碳复合纳米纤维支架
IF 2.8
Functional Composites and Structures Pub Date : 2024-07-02 DOI: 10.1088/2631-6331/ad5b49
Yasin Akgul, Elena Stojanovska, Mehmet Durmus Calisir, Yusuf Polat and Ali Kilic
{"title":"Centrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineering","authors":"Yasin Akgul, Elena Stojanovska, Mehmet Durmus Calisir, Yusuf Polat and Ali Kilic","doi":"10.1088/2631-6331/ad5b49","DOIUrl":"https://doi.org/10.1088/2631-6331/ad5b49","url":null,"abstract":"In recent years, advancements in tissue engineering have demonstrated the potential to expedite bone matrix formation, leading to shorter recovery times and decreased clinical challenges compared to conventional methods. Therefore, this study aims to develop composite carbon nanofibers (CNFs) integrated with nano-hydroxyapatite (nHA) particles as scaffolds for bone tissue engineering applications. A key strategy in achieving this objective involves harnessing nanofibrous structures, which offer a high surface area, coupled with nHA particles expected to accelerate bone regeneration and enhance biological activity. To realize this, polyacrylonitrile (PAN)/nHA nanofibers were fabricated using the centrifugal spinning (C-Spin) technique and subsequently carbonized to yield CNF/nHA composite structures. Scanning Electron Microscopy (SEM) confirmed C-Spin as a suitable method for PAN and CNF nanofiber production, with nHA particles uniformly dispersed throughout the nanofibrous structure. Carbonization resulted in reduced fiber diameter due to thermal decomposition and shrinkage of PAN molecules during the process. Furthermore, the incorporation of nHA particles into PAN lowered the stabilization temperature (by 5 °C–20 °C). Tensile tests revealed that PAN samples experienced an approximately 80% increase in ultimate tensile strength and a 187% increase in modulus with a 5 wt.% nHA loading. However, following carbonization, CNF samples exhibited a 50% decrease in strength compared to PAN samples. Additionally, the addition of nHA into CNF improved the graphitic structure. The incorporation of nHA particles into the spinning solution represents a viable strategy for enhancing CNF bioactivity.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"41 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信