Functional Composites and Structures最新文献

筛选
英文 中文
Effect of immediate curing at elevated temperatures on the tensile and interfacial properties of carbon fiber-epoxy composites 高温立即固化对碳纤维-环氧树脂复合材料拉伸性能和界面性能的影响
IF 2.8
Functional Composites and Structures Pub Date : 2024-07-01 DOI: 10.1088/2631-6331/ad5b4a
Alexandra Liever, Yingtao Liu and Shreya Vemuganti
{"title":"Effect of immediate curing at elevated temperatures on the tensile and interfacial properties of carbon fiber-epoxy composites","authors":"Alexandra Liever, Yingtao Liu and Shreya Vemuganti","doi":"10.1088/2631-6331/ad5b4a","DOIUrl":"https://doi.org/10.1088/2631-6331/ad5b4a","url":null,"abstract":"Elevated temperature conditions known to improve curing from the onset and during the process of immediate curing are not available in the field, which can hinder the mechanical performance of these strengthening systems. In this study, mechanical testing and material characterization were conducted to identify the effects of subjecting nanomodified epoxy and fiber-reinforced nanomodified epoxy composites to room temperature (RT) (30 °C) and elevated temperature (110 °C) from the onset of curing. Static tensile testing and interfacial adhesion tests were conducted to evaluate the mechanical performance. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed to determine curing characteristics to inform on the immediate curing of nanomodified resins cured under the two temperature conditions. Scanning electron microscopy was performed to identify Carbon nanotube (CNT) dispersion characteristics. Overall, due to the incorporation of CNTs in epoxy, RT curing results in upto 62% increase in strain at failure. By supplying additional energy during immediate curing with elevated temperatures, a 51% increase in strength and 42% increase in Youngs Modulus can be observed in the nanomodified epoxy. In CFRP-epoxy composites, due to the incorporation of CNTs in the epoxy, RT curing results in upto 27% increase in strain at failure. By supplying additional energy during immediate curing with elevated temperatures, upto 133% increase in strain at failure is observed and upto 17% increase in strength is observed. CNTs incorporated in CFRP-epoxy composites demonstrated upto 50% increase in interfacial adhesion whereas supplying additional energy for their immediate curing with elevated temperatures, upto 130% increase in interfacial adhesion was observed. TGA and DSC results supported the mechanical observations and show a need for immediate curing when CNTs are used in epoxy matrices.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"5 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of graphene nanoplatelets and titanium dioxide nanopowder-reinforced aluminium nanohybrid composites on mechanical properties 石墨烯纳米片和二氧化钛纳米粉体增强铝纳米杂化复合材料对力学性能的协同效应
IF 2.8
Functional Composites and Structures Pub Date : 2024-06-26 DOI: 10.1088/2631-6331/ad5925
Rahul Chaurasia and Saroj Kumar Sarangi
{"title":"Synergistic effect of graphene nanoplatelets and titanium dioxide nanopowder-reinforced aluminium nanohybrid composites on mechanical properties","authors":"Rahul Chaurasia and Saroj Kumar Sarangi","doi":"10.1088/2631-6331/ad5925","DOIUrl":"https://doi.org/10.1088/2631-6331/ad5925","url":null,"abstract":"Due to their effectiveness, lightweight materials have gained international attention in recent decades, with industrial sectors being the primary users of them. Metal matrix composites with nanohybrid reinforcement are a unique composite system combination that enhances the material’s mechanical qualities. In the present article, the mechanical properties of graphene nanoplatelets (GNP) and titanium dioxide (TiO2)-reinforced aluminium 7075 alloy are discussed with varying weight percentages of reinforcements prepared by the stir casting technique. 1 wt.% GNP with and 3 wt.% TiO2-reinforced composites show optimum properties within the range of reinforcement studied, with a 71.9% increment in tensile strength and an 86.6% improvement in microhardness observed; however, elongation is decreased by 31.7% in contrast to the base alloy. Maximum toughness is found to be in 0.5 wt.% GNP with 1 wt.% TiO2-reinforced nanohybrid composites. XRD results show phase analysis. SEM analysis of the fractured surface reveals a mixture of ductile and brittle fractures.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"8 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and finite element analysis of tensile properties of oil palm trunk im–pregnated with epoxy 环氧树脂浸渍油棕树干拉伸性能的实验和有限元分析
IF 2.8
Functional Composites and Structures Pub Date : 2024-06-20 DOI: 10.1088/2631-6331/ad540d
F Nik Wan, A Abubakar, M J Suriani, A M Saat, A Fitriadhy, W M N Wan Nik, M S Abdul Majid, Z Z Mukhtar, R A Ilyas, N Mohd Nurazzi and M N F Norrrahim
{"title":"Experimental and finite element analysis of tensile properties of oil palm trunk im–pregnated with epoxy","authors":"F Nik Wan, A Abubakar, M J Suriani, A M Saat, A Fitriadhy, W M N Wan Nik, M S Abdul Majid, Z Z Mukhtar, R A Ilyas, N Mohd Nurazzi and M N F Norrrahim","doi":"10.1088/2631-6331/ad540d","DOIUrl":"https://doi.org/10.1088/2631-6331/ad540d","url":null,"abstract":"This research focuses on determining the elastic properties from the development of a three-dimensional constitutive model of impregnated oil palm trunk reinforced with epoxy (OPTE) composite. The research aims to simulate the tensile behaviour of OPTE composite for finite element analysis and compared with the OPTE experimental results, respectively. The OPTE composites were manufactured by using one of the vacuum infusion techniques namely the vacuum-assisted resin transfer moulding technique. In this research, OPTE composite is considered as a unidirectional fibre due to the wood board in the resin. Tensile tests were conducted to provide the material properties as inputs into three-dimensional constitutive model. The tensile test was performed according to ASTM D3039. The test was divided into three zones including zone I (outer), zone II (middle) and zone III (inner). The three elastic constants (elastic modulus, shear modulus and Poisson’s ratio) of material properties were obtained from the tensile test data and theoretical equation. The model was developed in Abaqus software. The results from finite element method (FEM) were compared with the experimental results. There was a good agreement and promising results between FEM and the experimental data.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"28 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective optimization of glass/carbon hybrid composites for small wind turbine blades using extreme mixture design response surface methodology 利用极端混合物设计响应面方法对用于小型风力涡轮机叶片的玻璃/碳混合复合材料进行多目标优化
IF 2.8
Functional Composites and Structures Pub Date : 2024-06-03 DOI: 10.1088/2631-6331/ad45a7
Suhaib Mohammed and Raghuram L Naik
{"title":"Multi-objective optimization of glass/carbon hybrid composites for small wind turbine blades using extreme mixture design response surface methodology","authors":"Suhaib Mohammed and Raghuram L Naik","doi":"10.1088/2631-6331/ad45a7","DOIUrl":"https://doi.org/10.1088/2631-6331/ad45a7","url":null,"abstract":"Small wind turbines (SWTs) are a prominent renewable energy technology for decentralized power generation. Blade material and its profile are vital parameters for the aerodynamic performance of SWTs. Traditionally E-glass fiber-reinforced composites (FRCs) are the widely accepted material for developing SWT blades. However, its application is limited by moderate tensile and fatigue properties. Alternatively, other FRC materials such as carbon, basalt and natural fiber composites are proposed as future materials for SWT blades. However, individual materials are observed to satisfy the requirements partially. Therefore, the hybridization of these materials, particularly Glass/Carbon composites is foreseen as a prospective solution for developing cost-competitive and high-strength SWT blades. There are various studies performed to obtain optimized glass/carbon hybrid composites. However, overall material properties required for SWT blades such as low cost, lightweight, moderate flexural strength and higher tensile and fatigue strengths have not been considered simultaneously during the optimization process. This work presents multi-objective optimization of Glass/Carbon hybrid composites using extreme mixture design response surface methodology (RSM) for SWT applications. The weight percentages of glass and carbon fibers are optimized to achieve desired material properties for SWT blades. The experiments are planned using extreme mixture design RSM and the regression models for desired material properties are developed with a 95% confidence level. RSM-based desirability function is employed to perform multi-objective optimization. Maximum composite desirability of 93.5% is achieved with optimal proportions of 37.9% and 27.1% for glass and carbon fibers respectively. An adequate tensile, flexural and fatigue strengths of 486.02, 435.41 and 316.27 MPa respectively are obtained for optimized glass/carbon hybrid composite at an optimum cost of 2228.76 Rs Kg−1 and density of 3.39 g cm−3. The regression models and optimization results are validated through a confirmation experiment with an error of less than 6.1%.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"43 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysing the shape memory behaviour of MWCNT-enhanced nanocomposites: a comparative study between experimental and finite element analysis 分析 MWCNT 增强纳米复合材料的形状记忆行为:实验与有限元分析的比较研究
IF 2.8
Functional Composites and Structures Pub Date : 2024-05-13 DOI: 10.1088/2631-6331/ad45a9
Ritesh Gupta, Gaurav Mittal, Krishna Kumar and Upender Pandel
{"title":"Analysing the shape memory behaviour of MWCNT-enhanced nanocomposites: a comparative study between experimental and finite element analysis","authors":"Ritesh Gupta, Gaurav Mittal, Krishna Kumar and Upender Pandel","doi":"10.1088/2631-6331/ad45a9","DOIUrl":"https://doi.org/10.1088/2631-6331/ad45a9","url":null,"abstract":"Shape memory polymers (SMPs) are known for their unique ability to withstand large deformations and revert to their original shape under specific external stimuli. However, their broader application in biomedical and structural applications is restricted by limited mechanical and thermal properties. Introducing multi-walled carbon nanotubes (MWCNTs) into SMPs has proven to significantly enhance these characteristics without affecting their inherent shape memory features. This study investigates shape memory nanocomposites (SMNCs) through dynamic and thermogravimetric analyses, along with tensile, flexural, and shape memory testing, and explores fracture interfaces using scanning electron microscopy. Findings indicate optimal shape memory, thermal, and mechanical properties with 0.6 wt% MWCNT content, showcasing a shape recovery ratio of 93.11%, storage modulus of 4127.63 MPa, tensile strength of 55 MPa, and flexural strength of 107.94 MPa. Moreover, incorporating MWCNTs into epoxy demonstrated a reduction in recovery times by up to 50% at 0.6 wt% concentration. Despite a slight decrease in shape fixity ratio from 98.77% to 92.11%, shape recoverability remained nearly consistent across all samples. The study also introduces a novel finite element (FE) method in ABAQUS for modeling the thermomechanical behavior of SMNCs, incorporating viscoelasticity, validated by matching experimental results with FE simulations, highlighting its accuracy and practical applicability in engineering.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"36 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of latex/zinc oxide compounds with antibacterial properties for applications in biomedical engineering 开发具有抗菌特性的乳胶/氧化锌化合物,应用于生物医学工程
IF 2.8
Functional Composites and Structures Pub Date : 2024-05-12 DOI: 10.1088/2631-6331/ad45a8
G Durango-Giraldo, C Zapata-Hernandez, J F Santa and R Buitrago-Sierra
{"title":"Development of latex/zinc oxide compounds with antibacterial properties for applications in biomedical engineering","authors":"G Durango-Giraldo, C Zapata-Hernandez, J F Santa and R Buitrago-Sierra","doi":"10.1088/2631-6331/ad45a8","DOIUrl":"https://doi.org/10.1088/2631-6331/ad45a8","url":null,"abstract":"Natural rubber latex (NRL)—a polymer extracted from the rubber tree (Hevea brasiliensis)—has been used in multiple biomedical applications but does not have antibacterial properties. In this work, ZnO nanoparticles with two different morphologies were synthesized and added to NRL at different concentrations in order to evaluate the antibacterial properties of the resulting compounds. The characterization results obtained by electron microscopy and x-ray diffraction showed nanoparticles with spherical (mean size 69 ± 17 nm) and sheet morphology (mean size 154 ± 46 nm) with Wurtzite crystalline phase for both nanomaterials, respectively. The results of antibacterial tests showed that both compounds are effective against E. coli, and the reduction in bacterial viability was 90.3% and 96.4% for sheets and spherical nanomaterials, respectively. In the case of S. aureus, bacterial viability was reduced in both cases. The greatest antibacterial activity was evidenced in the nanoparticles with spherical morphology.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"146 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the Compressive Characteristics and Optimization of Design Parameters of a Novel Functionally Graded Cell Structure 新型功能分级电池结构的压缩特性研究与设计参数优化
IF 2.8
Functional Composites and Structures Pub Date : 2024-03-14 DOI: 10.1088/2631-6331/ad2c0f
Sakthi Balan Ganapathy, Aravind Raj Sakthivel
{"title":"Investigation on the Compressive Characteristics and Optimization of Design Parameters of a Novel Functionally Graded Cell Structure","authors":"Sakthi Balan Ganapathy, Aravind Raj Sakthivel","doi":"10.1088/2631-6331/ad2c0f","DOIUrl":"https://doi.org/10.1088/2631-6331/ad2c0f","url":null,"abstract":"Novel structural conceptualizations frequently incorporate inventive ideas, materials, or construction techniques. This study presents a unique design inspired by the traditional practice of sikku rangoli, a cultural tradition prevalent in the southern region of India, particularly in Tamil Nadu. Because it was novel, it was necessary to optimize the fundamental design for maximal outputs. In contrast to honeycomb structures, intercellular interactions are believed to contribute to the overall strengthening of the structure. By eliminating sharp corners from the structure, stress accumulation is prevented, resulting in improved stress distribution. Therefore, the design aspects that were deemed significant were taken into consideration and through the implementation of experimental design, an optimum design was determined. Utilizing the optimal base design as a foundation, the structure underwent several printing processes using diverse materials and incorporated multiple fillers. Furthermore, the structure was subjected to modifications employing the functional grading design concept. The study employed the functional grading design concept to examine the variations in load bearing capability, load distribution, and failure mode. The findings indicate that the compression strength of the composite structure was mostly influenced by the wall thickness. The combination of a carbon fiber reinforced base material with silicone rubber as filler, together with a functional graded cell structure featuring top and bottom densification, exhibited the highest compression strength compared to all other combinations. In order to investigate the accurate impact of the FG structures, every cell design was printed using PLA-CF, subjected to testing devoid of any additives, and the output parameters were computed. The results indicated that the center densified cell design exhibited significant values for specific energy absorption, relative density, and compressive strength (52.63 MPa, 0.652, and 2.95 kJ kg<sup>−1</sup>, respectively). The design of the base cell exhibited the greatest crushing force efficacy of 0.982.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"36 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly innovation: harnessing nature’s blueprint for enhanced photocatalysis and antimicrobial potential in multi-structured PN/ZnO nanoparticles 生态友好型创新:利用大自然的蓝图增强多结构 PN/ZnO 纳米粒子的光催化和抗菌潜力
IF 2.8
Functional Composites and Structures Pub Date : 2024-03-05 DOI: 10.1088/2631-6331/ad2c10
Jyoti Gaur, Sanjeev Kumar, Harpreet Kaur, Mohinder Pal, Supreet4, Kanchan Bala, Khalid Mujasam Batoo, Johnson Oshiobugie Momoh, Sajjad Hussain
{"title":"Eco-friendly innovation: harnessing nature’s blueprint for enhanced photocatalysis and antimicrobial potential in multi-structured PN/ZnO nanoparticles","authors":"Jyoti Gaur, Sanjeev Kumar, Harpreet Kaur, Mohinder Pal, Supreet4, Kanchan Bala, Khalid Mujasam Batoo, Johnson Oshiobugie Momoh, Sajjad Hussain","doi":"10.1088/2631-6331/ad2c10","DOIUrl":"https://doi.org/10.1088/2631-6331/ad2c10","url":null,"abstract":"This research unveils an innovative approach to green synthesis, detailed characterization, and multifunctional exploration of bio-functionalized zinc oxide nanoparticles (PN/ZnO NPs) adorned with phytochemicals from <italic toggle=\"yes\">Piper nigrum</italic> (PN). Employing an extensive suite of spectroscopic techniques and physicochemical methods, including UV–vis spectroscopy, field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), energy dispersive x-ray (EDX) spectroscopy, Fourier-transform infrared (FTIR), x-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, the study delves into the unique properties of PN/ZnO NPs. XRD confirms the development of the wurtzite phase with a crystallite diameter of 47.77 nm. FTIR reveals ZnO functionalization by PN’s phytochemicals, while FESEM and HRTEM suggest diverse architectural features. Selected area electron diffraction patterns authenticate the crystalline structure. BET analysis showcases a large specific surface area of 80.72 m<sup>2</sup> g<sup>−1</sup> and a mesoporous structure. The absorption peak at 372 nm and an energy band gap (<italic toggle=\"yes\">E</italic>\u0000<sub>g</sub>) of 3.44 eV validate ZnO NP formation. The catalytic performance is demonstrated through the degradation of commercial reactive yellow-17 (RY-17) dye, with PN/ZnO (dosage 300 mg l<sup>−1</sup>) achieving 94.72% removal at a dose of 120 mg l<sup>−1</sup>. Pseudo-first-order kinetics govern the photodegradation process. PN-ZnO NPs showcase potent antimicrobial efficacy against both gram-negative and gram-positive bacteria, with varying clearance zones. This study stands as an impactful exploration, integrating green synthesis, detailed characterization, and versatile functionalities of PN/ZnO NPs.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"44 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Nano Crack and Loading Direction on the Tensile Features of FeCr Alloy:A Molecular Dynamics Analysis 纳米裂纹和加载方向对铁铬合金拉伸特征的影响:分子动力学分析
IF 2.8
Functional Composites and Structures Pub Date : 2024-01-05 DOI: 10.1088/2631-6331/ad1bad
G. S, T. Jagadeesha
{"title":"Impact of Nano Crack and Loading Direction on the Tensile Features of FeCr Alloy:A Molecular Dynamics Analysis","authors":"G. S, T. Jagadeesha","doi":"10.1088/2631-6331/ad1bad","DOIUrl":"https://doi.org/10.1088/2631-6331/ad1bad","url":null,"abstract":"\u0000 The existence of cracks and variations in loading direction has invoked greater modifications in the material properties. In this work, the tensile features of cracked and non-cracked FeCr polycrystals have been analyzed under numerous temperatures (300 K, 500 K, 700 K, and 900 K) and loading directions (parallel and normal to the crack cross-sectional directions) through molecular dynamics and it is originated that temperature has raised a higher impact on the tensile features trailed by the existence of crack and loading directions, owing to the formation of larger kinetic energy amidst the atoms. The existence of crack offers a moderate impression on the tensile behavior followed by the loading direction, due to its dominant impact on the tensile behavior through greater stress concentrations. Additionally, it is stated that the greater temperature along with the existence of crack and loading along normal to the crack cross section offers greater reductions in the tensile features of FeCr polycrystal, owed to the interactive effect of larger kinetic energy and discontinuity among atoms. Furthermore, the shear strain and displacement contour map and materials feature also confirm a similar occurrence which leads to altering its material behavior.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"72 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Effective Hybrid Particle Swarm– Artificial Neural Network Optimization for Predicting Green Bio-Fiber Characteristics and Optimizing Biomaterial Performance 预测绿色生物纤维特性和优化生物材料性能的有效混合粒子群-人工神经网络优化方法
IF 2.8
Functional Composites and Structures Pub Date : 2024-01-04 DOI: 10.1088/2631-6331/ad1b28
Nashat Nawafleh, F. Al-Oqla
{"title":"An Effective Hybrid Particle Swarm– Artificial Neural Network Optimization for Predicting Green Bio-Fiber Characteristics and Optimizing Biomaterial Performance","authors":"Nashat Nawafleh, F. Al-Oqla","doi":"10.1088/2631-6331/ad1b28","DOIUrl":"https://doi.org/10.1088/2631-6331/ad1b28","url":null,"abstract":"\u0000 Natural fiber-reinforced composites are currently utilized in several applications due to worldwide environmental and cost concerns. However, these composites have production challenges such as poor reinforcement-matrix adhesion, that sophisticates the prediction of their mechanical properties. This study presents a novel, robust hybrid particle swarm – artificial neural network optimization (PSO-ANN) methodology to assess and create accurate predictions of the green bio-fibers to optimize and improve the mechanical features of biomaterials for green bio-products instead of performing tedious experimental works. As the mechanical qualities of green bio-fibers might differ from one fiber to another due to several interacted parameters, high complexity in predicting the bio-fiber capabilities exists. Therefore, this work utilizes suitable methods with a non-linear activation function to predict the mechanical characteristics of natural fibers that allow the researchers to improve the choices of natural fibers for biomaterials on the basis of cellulose content, the microfibrillar angle, and the diameter of natural fibers, decreasing the duration of the process required to characterize materials experimentally. The reliability of the introduced PSO-ANN model was verified by the investigations of the fiber’s tensile stress and Young’s modulus. Results showed that the presented model is capable of consistently and accurately monitoring the mechanical performance to a large degree, in comparison with experimental results. This in fact would facilitate and simplify the process of selecting the best natural fiber composites, which speeds up the experimental characterization phase and improves energy efficiency in the process of converting energy into monetary income, which would have ramifications for both economies and ecosystems. The anticipated method would also boost scientific evaluation of green fibers, confirming their role as a replacement material for green product fulfillment in future eco-friendly manufacturing.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信