Ritesh Gupta, Gaurav Mittal, Krishna Kumar and Upender Pandel
{"title":"分析 MWCNT 增强纳米复合材料的形状记忆行为:实验与有限元分析的比较研究","authors":"Ritesh Gupta, Gaurav Mittal, Krishna Kumar and Upender Pandel","doi":"10.1088/2631-6331/ad45a9","DOIUrl":null,"url":null,"abstract":"Shape memory polymers (SMPs) are known for their unique ability to withstand large deformations and revert to their original shape under specific external stimuli. However, their broader application in biomedical and structural applications is restricted by limited mechanical and thermal properties. Introducing multi-walled carbon nanotubes (MWCNTs) into SMPs has proven to significantly enhance these characteristics without affecting their inherent shape memory features. This study investigates shape memory nanocomposites (SMNCs) through dynamic and thermogravimetric analyses, along with tensile, flexural, and shape memory testing, and explores fracture interfaces using scanning electron microscopy. Findings indicate optimal shape memory, thermal, and mechanical properties with 0.6 wt% MWCNT content, showcasing a shape recovery ratio of 93.11%, storage modulus of 4127.63 MPa, tensile strength of 55 MPa, and flexural strength of 107.94 MPa. Moreover, incorporating MWCNTs into epoxy demonstrated a reduction in recovery times by up to 50% at 0.6 wt% concentration. Despite a slight decrease in shape fixity ratio from 98.77% to 92.11%, shape recoverability remained nearly consistent across all samples. The study also introduces a novel finite element (FE) method in ABAQUS for modeling the thermomechanical behavior of SMNCs, incorporating viscoelasticity, validated by matching experimental results with FE simulations, highlighting its accuracy and practical applicability in engineering.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing the shape memory behaviour of MWCNT-enhanced nanocomposites: a comparative study between experimental and finite element analysis\",\"authors\":\"Ritesh Gupta, Gaurav Mittal, Krishna Kumar and Upender Pandel\",\"doi\":\"10.1088/2631-6331/ad45a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape memory polymers (SMPs) are known for their unique ability to withstand large deformations and revert to their original shape under specific external stimuli. However, their broader application in biomedical and structural applications is restricted by limited mechanical and thermal properties. Introducing multi-walled carbon nanotubes (MWCNTs) into SMPs has proven to significantly enhance these characteristics without affecting their inherent shape memory features. This study investigates shape memory nanocomposites (SMNCs) through dynamic and thermogravimetric analyses, along with tensile, flexural, and shape memory testing, and explores fracture interfaces using scanning electron microscopy. Findings indicate optimal shape memory, thermal, and mechanical properties with 0.6 wt% MWCNT content, showcasing a shape recovery ratio of 93.11%, storage modulus of 4127.63 MPa, tensile strength of 55 MPa, and flexural strength of 107.94 MPa. Moreover, incorporating MWCNTs into epoxy demonstrated a reduction in recovery times by up to 50% at 0.6 wt% concentration. Despite a slight decrease in shape fixity ratio from 98.77% to 92.11%, shape recoverability remained nearly consistent across all samples. The study also introduces a novel finite element (FE) method in ABAQUS for modeling the thermomechanical behavior of SMNCs, incorporating viscoelasticity, validated by matching experimental results with FE simulations, highlighting its accuracy and practical applicability in engineering.\",\"PeriodicalId\":12652,\"journal\":{\"name\":\"Functional Composites and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composites and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-6331/ad45a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad45a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Analysing the shape memory behaviour of MWCNT-enhanced nanocomposites: a comparative study between experimental and finite element analysis
Shape memory polymers (SMPs) are known for their unique ability to withstand large deformations and revert to their original shape under specific external stimuli. However, their broader application in biomedical and structural applications is restricted by limited mechanical and thermal properties. Introducing multi-walled carbon nanotubes (MWCNTs) into SMPs has proven to significantly enhance these characteristics without affecting their inherent shape memory features. This study investigates shape memory nanocomposites (SMNCs) through dynamic and thermogravimetric analyses, along with tensile, flexural, and shape memory testing, and explores fracture interfaces using scanning electron microscopy. Findings indicate optimal shape memory, thermal, and mechanical properties with 0.6 wt% MWCNT content, showcasing a shape recovery ratio of 93.11%, storage modulus of 4127.63 MPa, tensile strength of 55 MPa, and flexural strength of 107.94 MPa. Moreover, incorporating MWCNTs into epoxy demonstrated a reduction in recovery times by up to 50% at 0.6 wt% concentration. Despite a slight decrease in shape fixity ratio from 98.77% to 92.11%, shape recoverability remained nearly consistent across all samples. The study also introduces a novel finite element (FE) method in ABAQUS for modeling the thermomechanical behavior of SMNCs, incorporating viscoelasticity, validated by matching experimental results with FE simulations, highlighting its accuracy and practical applicability in engineering.