Eco-friendly innovation: harnessing nature’s blueprint for enhanced photocatalysis and antimicrobial potential in multi-structured PN/ZnO nanoparticles

IF 3.1 Q2 MATERIALS SCIENCE, COMPOSITES
Jyoti Gaur, Sanjeev Kumar, Harpreet Kaur, Mohinder Pal, Supreet4, Kanchan Bala, Khalid Mujasam Batoo, Johnson Oshiobugie Momoh, Sajjad Hussain
{"title":"Eco-friendly innovation: harnessing nature’s blueprint for enhanced photocatalysis and antimicrobial potential in multi-structured PN/ZnO nanoparticles","authors":"Jyoti Gaur, Sanjeev Kumar, Harpreet Kaur, Mohinder Pal, Supreet4, Kanchan Bala, Khalid Mujasam Batoo, Johnson Oshiobugie Momoh, Sajjad Hussain","doi":"10.1088/2631-6331/ad2c10","DOIUrl":null,"url":null,"abstract":"This research unveils an innovative approach to green synthesis, detailed characterization, and multifunctional exploration of bio-functionalized zinc oxide nanoparticles (PN/ZnO NPs) adorned with phytochemicals from <italic toggle=\"yes\">Piper nigrum</italic> (PN). Employing an extensive suite of spectroscopic techniques and physicochemical methods, including UV–vis spectroscopy, field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), energy dispersive x-ray (EDX) spectroscopy, Fourier-transform infrared (FTIR), x-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, the study delves into the unique properties of PN/ZnO NPs. XRD confirms the development of the wurtzite phase with a crystallite diameter of 47.77 nm. FTIR reveals ZnO functionalization by PN’s phytochemicals, while FESEM and HRTEM suggest diverse architectural features. Selected area electron diffraction patterns authenticate the crystalline structure. BET analysis showcases a large specific surface area of 80.72 m<sup>2</sup> g<sup>−1</sup> and a mesoporous structure. The absorption peak at 372 nm and an energy band gap (<italic toggle=\"yes\">E</italic>\n<sub>g</sub>) of 3.44 eV validate ZnO NP formation. The catalytic performance is demonstrated through the degradation of commercial reactive yellow-17 (RY-17) dye, with PN/ZnO (dosage 300 mg l<sup>−1</sup>) achieving 94.72% removal at a dose of 120 mg l<sup>−1</sup>. Pseudo-first-order kinetics govern the photodegradation process. PN-ZnO NPs showcase potent antimicrobial efficacy against both gram-negative and gram-positive bacteria, with varying clearance zones. This study stands as an impactful exploration, integrating green synthesis, detailed characterization, and versatile functionalities of PN/ZnO NPs.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad2c10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This research unveils an innovative approach to green synthesis, detailed characterization, and multifunctional exploration of bio-functionalized zinc oxide nanoparticles (PN/ZnO NPs) adorned with phytochemicals from Piper nigrum (PN). Employing an extensive suite of spectroscopic techniques and physicochemical methods, including UV–vis spectroscopy, field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), energy dispersive x-ray (EDX) spectroscopy, Fourier-transform infrared (FTIR), x-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, the study delves into the unique properties of PN/ZnO NPs. XRD confirms the development of the wurtzite phase with a crystallite diameter of 47.77 nm. FTIR reveals ZnO functionalization by PN’s phytochemicals, while FESEM and HRTEM suggest diverse architectural features. Selected area electron diffraction patterns authenticate the crystalline structure. BET analysis showcases a large specific surface area of 80.72 m2 g−1 and a mesoporous structure. The absorption peak at 372 nm and an energy band gap (E g) of 3.44 eV validate ZnO NP formation. The catalytic performance is demonstrated through the degradation of commercial reactive yellow-17 (RY-17) dye, with PN/ZnO (dosage 300 mg l−1) achieving 94.72% removal at a dose of 120 mg l−1. Pseudo-first-order kinetics govern the photodegradation process. PN-ZnO NPs showcase potent antimicrobial efficacy against both gram-negative and gram-positive bacteria, with varying clearance zones. This study stands as an impactful exploration, integrating green synthesis, detailed characterization, and versatile functionalities of PN/ZnO NPs.
生态友好型创新:利用大自然的蓝图增强多结构 PN/ZnO 纳米粒子的光催化和抗菌潜力
这项研究揭示了一种绿色合成、详细表征和多功能探索生物功能化氧化锌纳米粒子(PN/ZnO NPs)的创新方法,该纳米粒子缀有来自黑胡椒(PN)的植物化学物质。研究采用了大量光谱技术和理化方法,包括紫外可见光谱、场发射扫描电子显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)、能量色散 X 射线(EDX)光谱、傅立叶变换红外(FTIR)、X 射线衍射(XRD)和布鲁瑙尔-艾美特-泰勒(BET)分析,深入研究了 PN/ZnO NPs 的独特性质。X 射线衍射证实了晶粒直径为 47.77 纳米的钨晶相的形成。傅立叶变换红外光谱(FTIR)显示了 PN 植物化学物质对 ZnO 的官能化作用,而 FESEM 和 HRTEM 则显示了不同的结构特征。选区电子衍射图证实了其晶体结构。BET 分析显示其比表面积高达 80.72 m2 g-1,并具有介孔结构。波长为 372 纳米的吸收峰和 3.44 eV 的能带隙(Eg)验证了氧化锌氮氧化物的形成。通过降解商用活性黄-17(RY-17)染料,证明了该催化剂的催化性能,PN/ZnO(用量为 300 毫克/升-1)在用量为 120 毫克/升-1 时的去除率为 94.72%。光降解过程采用伪一阶动力学。PN-ZnO NPs 对革兰氏阴性菌和革兰氏阳性菌都有很强的抗菌效果,清除区域各不相同。这项研究集 PN/ZnO NPs 的绿色合成、详细表征和多功能性于一体,是一次极具影响力的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Composites and Structures
Functional Composites and Structures Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
10.70%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信