Deniz Cakir, Omer R Caylan, Erhan Gurpinar, Ogulcan Akgul, H Onat Tugrul, Elif Okay, Eren Atli, Benat Kockar, Goknur Cambaz Buke
{"title":"增强石墨烯强化铜 (G/Cu) 复合材料的抗压强度","authors":"Deniz Cakir, Omer R Caylan, Erhan Gurpinar, Ogulcan Akgul, H Onat Tugrul, Elif Okay, Eren Atli, Benat Kockar, Goknur Cambaz Buke","doi":"10.1088/2631-6331/ad6954","DOIUrl":null,"url":null,"abstract":"This study explores the compressive mechanical properties of copper composites reinforced with graphene. Graphene was synthesized on copper powders via plasma-enhanced chemical vapor deposition. Multilayer graphene formation has been substantiated by Raman analysis. Graphene-coated copper (G/Cu) powders were then subjected to pressing and sintering to fabricate G/Cu composites. The mechanical properties of G/Cu composites were investigated under compression from room temperature up to 400 °C in air. The results demonstrated a substantial improvement in the mechanical properties of G/Cu composites compared to monolithic copper. Specifically, the yield strength in compression of the G/Cu composite increased by 203% at room temperature and by 190% at 200 °C. At 400 °C, the yield strength enhancement exceeded 370%. Microstructural analysis suggests that the observed enhancements in G/Cu composites can be attributed to reduced porosity, smaller grain size, and inhibited dislocation motion at the increased grain boundary area (due to refined grain size) and graphene-copper interfaces.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced compressive strength of graphene strengthened copper (G/Cu) composites\",\"authors\":\"Deniz Cakir, Omer R Caylan, Erhan Gurpinar, Ogulcan Akgul, H Onat Tugrul, Elif Okay, Eren Atli, Benat Kockar, Goknur Cambaz Buke\",\"doi\":\"10.1088/2631-6331/ad6954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the compressive mechanical properties of copper composites reinforced with graphene. Graphene was synthesized on copper powders via plasma-enhanced chemical vapor deposition. Multilayer graphene formation has been substantiated by Raman analysis. Graphene-coated copper (G/Cu) powders were then subjected to pressing and sintering to fabricate G/Cu composites. The mechanical properties of G/Cu composites were investigated under compression from room temperature up to 400 °C in air. The results demonstrated a substantial improvement in the mechanical properties of G/Cu composites compared to monolithic copper. Specifically, the yield strength in compression of the G/Cu composite increased by 203% at room temperature and by 190% at 200 °C. At 400 °C, the yield strength enhancement exceeded 370%. Microstructural analysis suggests that the observed enhancements in G/Cu composites can be attributed to reduced porosity, smaller grain size, and inhibited dislocation motion at the increased grain boundary area (due to refined grain size) and graphene-copper interfaces.\",\"PeriodicalId\":12652,\"journal\":{\"name\":\"Functional Composites and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composites and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-6331/ad6954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad6954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了石墨烯增强铜复合材料的压缩机械性能。石墨烯是通过等离子体增强化学气相沉积法在铜粉上合成的。拉曼分析证实了多层石墨烯的形成。然后对石墨烯涂层铜(G/Cu)粉末进行压制和烧结,制成 G/Cu 复合材料。研究了 G/Cu 复合材料在空气中从室温到 400 °C 的压缩条件下的机械性能。结果表明,与单片铜相比,G/Cu 复合材料的机械性能有了大幅提高。具体来说,G/Cu 复合材料的压缩屈服强度在室温下提高了 203%,在 200 °C 时提高了 190%。在 400 °C 时,屈服强度提高了 370%。微观结构分析表明,在 G/Cu 复合材料中观察到的增强可归因于孔隙率降低、晶粒尺寸变小以及晶界面积增大(由于晶粒尺寸细化)和石墨烯-铜界面处位错运动受到抑制。
Enhanced compressive strength of graphene strengthened copper (G/Cu) composites
This study explores the compressive mechanical properties of copper composites reinforced with graphene. Graphene was synthesized on copper powders via plasma-enhanced chemical vapor deposition. Multilayer graphene formation has been substantiated by Raman analysis. Graphene-coated copper (G/Cu) powders were then subjected to pressing and sintering to fabricate G/Cu composites. The mechanical properties of G/Cu composites were investigated under compression from room temperature up to 400 °C in air. The results demonstrated a substantial improvement in the mechanical properties of G/Cu composites compared to monolithic copper. Specifically, the yield strength in compression of the G/Cu composite increased by 203% at room temperature and by 190% at 200 °C. At 400 °C, the yield strength enhancement exceeded 370%. Microstructural analysis suggests that the observed enhancements in G/Cu composites can be attributed to reduced porosity, smaller grain size, and inhibited dislocation motion at the increased grain boundary area (due to refined grain size) and graphene-copper interfaces.