Estelle A C Bonin, Nicolas Lejeune, Emilie Szymkowicz, Vincent Bonhomme, Charlotte Martial, Olivia Gosseries, Steven Laureys, Aurore Thibaut
{"title":"Assessment and management of pain/nociception in patients with disorders of consciousness or locked-in syndrome: A narrative review.","authors":"Estelle A C Bonin, Nicolas Lejeune, Emilie Szymkowicz, Vincent Bonhomme, Charlotte Martial, Olivia Gosseries, Steven Laureys, Aurore Thibaut","doi":"10.3389/fnsys.2023.1112206","DOIUrl":"https://doi.org/10.3389/fnsys.2023.1112206","url":null,"abstract":"<p><p>The assessment and management of pain and nociception is very challenging in patients unable to communicate functionally such as patients with disorders of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the detection of signs of pain and nociception by the medical staff is therefore essential for the wellbeing and management of these patients. However, there is still a lot unknown and a lack of clear guidelines regarding the assessment, management and treatment of pain and nociception in these populations. The purpose of this narrative review is to examine the current knowledge regarding this issue by covering different topics such as: the neurophysiology of pain and nociception (in healthy subjects and patients), the source and impact of nociception and pain in DoC and LIS and, finally, the assessment and treatment of pain and nociception in these populations. In this review we will also give possible research directions that could help to improve the management of this specific population of severely brain damaged patients.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"17 ","pages":"1112206"},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9263678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susan T Lubejko, Robert D Graham, Giulia Livrizzi, Robert Schaefer, Matthew R Banghart, Meaghan C Creed
{"title":"The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia.","authors":"Susan T Lubejko, Robert D Graham, Giulia Livrizzi, Robert Schaefer, Matthew R Banghart, Meaghan C Creed","doi":"10.3389/fnsys.2022.1044686","DOIUrl":"10.3389/fnsys.2022.1044686","url":null,"abstract":"<p><p>Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"16 ","pages":"1044686"},"PeriodicalIF":3.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9158858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pupillary dynamics of mice performing a Pavlovian delay conditioning task reflect reward-predictive signals.","authors":"Kota Yamada, Koji Toda","doi":"10.3389/fnsys.2022.1045764","DOIUrl":"10.3389/fnsys.2022.1045764","url":null,"abstract":"<p><p>Pupils can signify various internal processes and states, such as attention, arousal, and working memory. Changes in pupil size have been associated with learning speed, prediction of future events, and deviations from the prediction in human studies. However, the detailed relationships between pupil size changes and prediction are unclear. We explored pupil size dynamics in mice performing a Pavlovian delay conditioning task. A head-fixed experimental setup combined with deep-learning-based image analysis enabled us to reduce spontaneous locomotor activity and to track the precise dynamics of pupil size of behaving mice. By setting up two experimental groups, one for which mice were able to predict reward in the Pavlovian delay conditioning task and the other for which mice were not, we demonstrated that the pupil size of mice is modulated by reward prediction and consumption, as well as body movements, but not by unpredicted reward delivery. Furthermore, we clarified that pupil size is still modulated by reward prediction even after the disruption of body movements by intraperitoneal injection of haloperidol, a dopamine D2 receptor antagonist. These results suggest that changes in pupil size reflect reward prediction signals. Thus, we provide important evidence to reconsider the neuronal circuit involved in computing reward prediction error. This integrative approach of behavioral analysis, image analysis, pupillometry, and pharmacological manipulation will pave the way for understanding the psychological and neurobiological mechanisms of reward prediction and the prediction errors essential to learning and behavior.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"16 ","pages":"1045764"},"PeriodicalIF":3.1,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10437317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica A Higginbotham, Tamara Markovic, Nicolas Massaly, Jose A Morón
{"title":"Endogenous opioid systems alterations in pain and opioid use disorder.","authors":"Jessica A Higginbotham, Tamara Markovic, Nicolas Massaly, Jose A Morón","doi":"10.3389/fnsys.2022.1014768","DOIUrl":"10.3389/fnsys.2022.1014768","url":null,"abstract":"<p><p>Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"16 ","pages":"1014768"},"PeriodicalIF":3.1,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10741374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengya Wang, Joseph O Tutt, Nicholas O Dorricott, Krystal L Parker, Andrew F Russo, Levi P Sowers
{"title":"Involvement of the cerebellum in migraine.","authors":"Mengya Wang, Joseph O Tutt, Nicholas O Dorricott, Krystal L Parker, Andrew F Russo, Levi P Sowers","doi":"10.3389/fnsys.2022.984406","DOIUrl":"10.3389/fnsys.2022.984406","url":null,"abstract":"<p><p>Migraine is a disabling neurological disease characterized by moderate or severe headaches and accompanied by sensory abnormalities, e.g., photophobia, allodynia, and vertigo. It affects approximately 15% of people worldwide. Despite advancements in current migraine therapeutics, mechanisms underlying migraine remain elusive. Within the central nervous system, studies have hinted that the cerebellum may play an important sensory integrative role in migraine. More specifically, the cerebellum has been proposed to modulate pain processing, and imaging studies have revealed cerebellar alterations in migraine patients. This review aims to summarize the clinical and preclinical studies that link the cerebellum to migraine. We will first discuss cerebellar roles in pain modulation, including cerebellar neuronal connections with pain-related brain regions. Next, we will review cerebellar symptoms and cerebellar imaging data in migraine patients. Lastly, we will highlight the possible roles of the neuropeptide calcitonin gene-related peptide (CGRP) in migraine symptoms, including preclinical cerebellar studies in animal models of migraine.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"16 ","pages":"984406"},"PeriodicalIF":3.0,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10666673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitish Singh Jangwan, Ghulam Md Ashraf, Veerma Ram, Vinod Singh, Badrah S Alghamdi, Adel Mohammad Abuzenadah, Mamta F Singh
{"title":"Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects.","authors":"Nitish Singh Jangwan, Ghulam Md Ashraf, Veerma Ram, Vinod Singh, Badrah S Alghamdi, Adel Mohammad Abuzenadah, Mamta F Singh","doi":"10.3389/fnsys.2022.1000495","DOIUrl":"10.3389/fnsys.2022.1000495","url":null,"abstract":"<p><p>Ever since the dawn of antiquity, people have strived to improve their cognitive abilities. From the advent of the wheel to the development of artificial intelligence, technology has had a profound leverage on civilization. Cognitive enhancement or augmentation of brain functions has become a trending topic both in academic and public debates in improving physical and mental abilities. The last years have seen a plethora of suggestions for boosting cognitive functions and biochemical, physical, and behavioral strategies are being explored in the field of cognitive enhancement. Despite expansion of behavioral and biochemical approaches, various physical strategies are known to boost mental abilities in diseased and healthy individuals. Clinical applications of neuroscience technologies offer alternatives to pharmaceutical approaches and devices for diseases that have been fatal, so far. Importantly, the distinctive aspect of these technologies, which shapes their existing and anticipated participation in brain augmentations, is used to compare and contrast them. As a preview of the next two decades of progress in brain augmentation, this article presents a plausible estimation of the many neuroscience technologies, their virtues, demerits, and applications. The review also focuses on the ethical implications and challenges linked to modern neuroscientific technology. There are times when it looks as if ethics discussions are more concerned with the hypothetical than with the factual. We conclude by providing recommendations for potential future studies and development areas, taking into account future advancements in neuroscience innovation for brain enhancement, analyzing historical patterns, considering neuroethics and looking at other related forecasts.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"16 ","pages":"1000495"},"PeriodicalIF":3.1,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538357/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10274732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria G Veldhuizen, Cinzia Cecchetto, Alexander W Fjaeldstad, Michael C Farruggia, Renée Hartig, Yuko Nakamura, Robert Pellegrino, Andy W K Yeung, Florian Ph S Fischmeister
{"title":"Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges.","authors":"Maria G Veldhuizen, Cinzia Cecchetto, Alexander W Fjaeldstad, Michael C Farruggia, Renée Hartig, Yuko Nakamura, Robert Pellegrino, Andy W K Yeung, Florian Ph S Fischmeister","doi":"10.3389/fnsys.2022.885304","DOIUrl":"10.3389/fnsys.2022.885304","url":null,"abstract":"<p><p>Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"16 ","pages":"885304"},"PeriodicalIF":3.1,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10739906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffery A. Boychuk, Corwin R. Butler, K. C. Smith, Miklós B. Halmos, Bret N. Smith
{"title":"Zolpidem Profoundly Augments Spared Tonic GABAAR Signaling in Dentate Granule Cells Ipsilateral to Controlled Cortical Impact Brain Injury in Mice","authors":"Jeffery A. Boychuk, Corwin R. Butler, K. C. Smith, Miklós B. Halmos, Bret N. Smith","doi":"10.3389/fnsys.2022.867323","DOIUrl":"https://doi.org/10.3389/fnsys.2022.867323","url":null,"abstract":"Type A GABA receptors (GABAARs) are pentameric combinations of protein subunits that give rise to tonic (ITonicGABA) and phasic (i.e., synaptic; ISynapticGABA) forms of inhibitory GABAAR signaling in the central nervous system. Remodeling and regulation of GABAAR protein subunits are implicated in a wide variety of healthy and injury-dependent states, including epilepsy. The present study undertook a detailed analysis of GABAAR signaling using whole-cell patch clamp recordings from mouse dentate granule cells (DGCs) in coronal slices containing dorsal hippocampus at 1–2 or 8–13 weeks after a focal, controlled cortical impact (CCI) or sham brain injury. Zolpidem, a benzodiazepine-like positive modulator of GABAARs, was used to test for changes in GABAAR signaling of DGCs due to its selectivity for α1 subunit-containing GABAARs. Electric charge transfer and statistical percent change were analyzed in order to directly compare tonic and phasic GABAAR signaling and to account for zolpidem’s ability to modify multiple parameters of GABAAR kinetics. We observed that baseline ITonicGABA is preserved at both time-points tested in DGCs ipsilateral to injury (Ipsi-DGCs) compared to DGCs contralateral to injury (Contra-DGCs) or after sham injury (Sham-DGCs). Interestingly, application of zolpidem resulted in modulation of ITonicGABA across groups, with Ipsi-DGCs exhibiting the greatest responsiveness to zolpidem. We also report that the combination of CCI and acute application of zolpidem profoundly augments the proportion of GABAAR charge transfer mediated by tonic vs. synaptic currents at both time-points tested, whereas gene expression of GABAAR α1, α2, α3, and γ2 subunits is unchanged at 8–13 weeks post-injury. Overall, this work highlights the shift toward elevated influence of tonic inhibition in Ipsi-DGCs, the impact of zolpidem on all components of inhibitory control of DGCs, and the sustained nature of these changes in inhibitory tone after CCI injury.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49035604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Does Machine Understanding Require Consciousness?","authors":"R. Pepperell","doi":"10.3389/fnsys.2022.788486","DOIUrl":"https://doi.org/10.3389/fnsys.2022.788486","url":null,"abstract":"This article addresses the question of whether machine understanding requires consciousness. Some researchers in the field of machine understanding have argued that it is not necessary for computers to be conscious as long as they can match or exceed human performance in certain tasks. But despite the remarkable recent success of machine learning systems in areas such as natural language processing and image classification, important questions remain about their limited performance and about whether their cognitive abilities entail genuine understanding or are the product of spurious correlations. Here I draw a distinction between natural, artificial, and machine understanding. I analyse some concrete examples of natural understanding and show that although it shares properties with the artificial understanding implemented in current machine learning systems it also has some essential differences, the main one being that natural understanding in humans entails consciousness. Moreover, evidence from psychology and neurobiology suggests that it is this capacity for consciousness that, in part at least, explains for the superior performance of humans in some cognitive tasks and may also account for the authenticity of semantic processing that seems to be the hallmark of natural understanding. I propose a hypothesis that might help to explain why consciousness is important to understanding. In closing, I suggest that progress toward implementing human-like understanding in machines—machine understanding—may benefit from a naturalistic approach in which natural processes are modelled as closely as possible in mechanical substrates.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49232177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Anesthesia on Oligodendrocyte Development in the Brain","authors":"Ningning Fu, Rui Zhu, Shuang Zeng, Ningning Li, Jiaqiang Zhang","doi":"10.3389/fnsys.2022.848362","DOIUrl":"https://doi.org/10.3389/fnsys.2022.848362","url":null,"abstract":"Oligodendrocytes (OLs) participate in the formation of myelin, promoting the propagation of action potentials, and disruption of their proliferation and differentiation leads to central nervous system (CNS) damage. As surgical techniques have advanced, there is an increasing number of children who undergo multiple procedures early in life, and recent experiments have demonstrated effects on brain development after a single or multiple anesthetics. An increasing number of clinical studies showing the effects of anesthetic drugs on the development of the nervous system may mainly reside in the connections between neurons, where myelin development will receive more research attention. In this article, we review the relationship between anesthesia exposure and the brain and OLs, provide new insights into the development of the relationship between anesthesia exposure and OLs, and provide a theoretical basis for clinical prevention of neurodevelopmental risks of general anesthesia drugs.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48663327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}