Carley Rivers, Christopher Farber, Melissa Heath, Elisa Gonzales, Douglas W Barrett, F Gonzalez-Lima, Michelle A Lane
{"title":"Dietary omega-3 polyunsaturated fatty acids reduce cytochrome c oxidase in brain white matter and sensorimotor regions while increasing functional interactions between neural systems related to escape behavior in postpartum rats.","authors":"Carley Rivers, Christopher Farber, Melissa Heath, Elisa Gonzales, Douglas W Barrett, F Gonzalez-Lima, Michelle A Lane","doi":"10.3389/fnsys.2024.1423966","DOIUrl":"10.3389/fnsys.2024.1423966","url":null,"abstract":"<p><strong>Introduction: </strong>Previously, we showed that omega-3 polyunsaturated fatty acid n-3 (PUFA) supplementation improved the performance of postpartum rats in the shuttle box escape test (SBET).</p><p><strong>Methods: </strong>The brains of these rats were used in the current study which examined brain cytochrome c oxidase (CCO) activity in white matter bundles and 39 regions spanning sensorimotor, limbic, and cognitive areas to determine the effects of n-3 PUFAs on neural metabolic capacity and network interactions.</p><p><strong>Results: </strong>We found that n-3 PUFA supplementation decreased CCO activity in white matter bundles, deep and superficial areas within the inferior colliculus, the anterior and barrel field regions of the primary somatic sensorimotor cortex, the secondary somatic sensorimotor cortex, the lateral, anterior regions of the secondary visual cortex and the ventral posterior nucleus of the thalamus, and the medial nucleus of the amygdala. Structural equation modeling revealed that animals consuming diets without n-3 PUFAs exhibited fewer inter-regional interactions when compared to those fed diets with n-3 PUFAs. Without n-3 PUFAs, inter-regional interactions were observed between the posterior cingulate cortex and amygdala as well as among amygdala subregions. With n-3 PUFAs, more inter-regional interactions were observed, particularly between regions associated with fear memory processing and escape. Correlations between regional CCO activity and SBET behavior were observed in rats lacking dietary n-3 PUFAs but not in those supplemented with these nutrients.</p><p><strong>Discussion: </strong>In conclusion, consumption of n-3 PUFAs results in reduced CCO activity in white matter bundles and sensorimotor regions, reflecting more efficient neurotransmission, and an increase in inter-regional interactions, facilitating escape from footshock.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1423966"},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling saccade reaction time in marmosets: the contribution of earlier visual response and variable inhibition.","authors":"Wajd Amly, Chih-Yang Chen, Tadashi Isa","doi":"10.3389/fnsys.2024.1478019","DOIUrl":"10.3389/fnsys.2024.1478019","url":null,"abstract":"<p><p>Marmosets are expected to serve as a valuable model for studying the primate visuomotor system due to their similar oculomotor behaviors to humans and macaques. Despite these similarities, differences exist; challenges in training marmosets on tasks requiring suppression of unwanted saccades, having consistently shorter, yet more variable saccade reaction times (SRT) compared to humans and macaques. This study investigates whether the short and variable SRT in marmosets is related to differences in visual signal transduction and variability in inhibitory control. We refined a computational SRT model, adjusting parameters to better capture the marmoset SRT distribution in a gap saccade task. Our findings indicate that visual information processing is faster in marmosets, and that saccadic inhibition is more variable compared to other species.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1478019"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Doubliez, Enzo Nio, Fernando Senovilla-Sanz, Vasiliki Spatharioti, Richard Apps, Dagmar Timmann, Charlotte L Lawrenson
{"title":"Corrigendum: The cerebellum and fear extinction: evidence from rodent and human studies.","authors":"Alice Doubliez, Enzo Nio, Fernando Senovilla-Sanz, Vasiliki Spatharioti, Richard Apps, Dagmar Timmann, Charlotte L Lawrenson","doi":"10.3389/fnsys.2024.1488334","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1488334","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/fnsys.2023.1166166.].</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1488334"},"PeriodicalIF":3.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Souad Haijoub, Charlotte Hautefort, Michel Toupet, Michel Lacour
{"title":"Asymmetry and rehabilitation of the subjective visual vertical in unilateral vestibular hypofunction patients","authors":"Souad Haijoub, Charlotte Hautefort, Michel Toupet, Michel Lacour","doi":"10.3389/fnsys.2024.1454637","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1454637","url":null,"abstract":"AimsPatients with acute unilateral peripheral vestibular hypofunction (AUVP) show postural, ocular motor, and perceptive signs on the diseased side. The subjective visual vertical (SVV) test measures the perceived bias in earth-vertical orientation with a laser line in darkness. This study was aimed at (1) examining whether SVV bias could depend on preset line orientation and angles, and (2) investigating whether vestibular rehabilitation (VR) can improve SVV normalization. To our knowledge, SVV symmetry/asymmetry and impact of VR on SVV normalization have never been documented in the literature.Participants and methodsWe investigated the SVV bias in a retrospective study (Study 1: <jats:italic>n</jats:italic> = 42 AUVP patients) comparing the data recorded for line orientation to the ipsilateral and contralateral sides at preset angles of 15° and 30°. We investigated the effects of VR on SVV normalization in a prospective study (Study 2: <jats:italic>n</jats:italic> = 20 AUPV patients) in which patients were tilted in the roll plane using a support tilted to the hypofunction side with the same amplitude as the SVV bias. This VR protocol was performed twice a week for 4 weeks. Supplementary data on body weight distribution and medio-lateral position of the center of foot pressure (CoP) were obtained using posturography recordings.ResultsStudy 1 showed asymmetrical values of the SVV bias. On average, the SVV errors were significantly higher for ipsilateral compared to contralateral line orientation (6.98° ± 3.7° vs. 4.95° ± 3.6°; <jats:italic>p</jats:italic> &lt; 0.0001), and for 30° compared to 15° preset angle (6.76° ± 4.2° vs. 5.66° ± 3.3°; <jats:italic>p</jats:italic> &lt; 0.0001). Study 2 showed a fast SVV normalization with VR. Non-pathological SVV bias (below ±2°) was found after only 3 to 5 VR sessions while pathological SVV values were still observed at the same time after symptoms onset in patients without VR (1.25° ± 1.46° vs. 4.32° ± 2.81°, respectively; <jats:italic>p</jats:italic> &lt; 0.0001). A close temporal correlation was observed in the time course of body weight distribution, mediolateral CoP position, and SVV bias over time, suggesting beneficial effects of the VR protocol at both the perceptive and postural levels.ConclusionWe recommend routine assessment of the ipsilateral and contralateral SVV bias separately for a better evaluation of otolith organs imbalance that can trigger chronic instability and dizziness. The SVV bias and the postural impairment caused by the imbalanced otolith inputs after unilateral vestibular loss can be rapidly normalized by tilting the patients in the roll plane, an additional means in the physiotherapist’s toolbox. The protocol likely reweights the visual and somatosensory cues involved in the perception of verticality.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"184 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain-consistent architecture for imagination.","authors":"Hiroshi Yamakawa, Ayako Fukawa, Ikuko Eguchi Yairi, Yutaka Matsuo","doi":"10.3389/fnsys.2024.1302429","DOIUrl":"10.3389/fnsys.2024.1302429","url":null,"abstract":"<p><strong>Background: </strong>Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus.</p><p><strong>Objective: </strong>In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ.</p><p><strong>Results: </strong>In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1302429"},"PeriodicalIF":3.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maurizio Cundari, Susanna Vestberg, Peik Gustafsson, Sorina Gorcenco, Anders Rasmussen
{"title":"Corrigendum: Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia.","authors":"Maurizio Cundari, Susanna Vestberg, Peik Gustafsson, Sorina Gorcenco, Anders Rasmussen","doi":"10.3389/fnsys.2024.1462062","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1462062","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/fnsys.2023.1168666.].</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1462062"},"PeriodicalIF":3.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Paola Tramonti Fantozzi, Vincenzo De Cicco, Andrea Bazzani, Enrico Cataldo, Luca Bruschini, Davide De Cicco, Paola d'Ascanio, Ugo Faraguna, Diego Manzoni
{"title":"Occlusal effects on text reading: an eye-tracker study.","authors":"Maria Paola Tramonti Fantozzi, Vincenzo De Cicco, Andrea Bazzani, Enrico Cataldo, Luca Bruschini, Davide De Cicco, Paola d'Ascanio, Ugo Faraguna, Diego Manzoni","doi":"10.3389/fnsys.2024.1409251","DOIUrl":"10.3389/fnsys.2024.1409251","url":null,"abstract":"<p><strong>Introduction: </strong>Asymmetric electromyographic (EMG) activity during teeth clenching has been linked to cognitive impairment, as evaluated by the Spinnler-Tognoni matrices test, and to asymmetric pupil size (anisocoria). Anisocoria indicates an asymmetric Locus Coeruleus activity, leading to an asymmetric hemispheric excitability worsening cognitive performance. Bite splint wearing corrects EMG asymmetry, reduces anisocoria and improves cognitive performance. This study explores the possible effect of EMG asymmetry on oculomotor behavior during text reading.</p><p><strong>Methods: </strong>In subjects showing different degrees of EMG asymmetry during clenching, the number and duration of fixation periods during a reading task, performed under two different occlusal conditions were analyzed. The first lecture was executed with a dental impression (imprint) interposed between the dental arches (corrected condition) and the second one with the arches in direct contact (habitual condition), without clenching effort. The imprint reduced the EMG asymmetries during clenching.</p><p><strong>Results: </strong>In both occlusal conditions, total reading time correlated with duration of fixations, but not with their number. An inverse relation was observed between the number of fixations and their duration across individuals. Fixation frequency and duration were positively and negatively correlated with the amplitude of EMG asymmetry, respectively. Differently, total reading time was not related to the EMG asymmetry. When switching from the corrected to the habitual condition, an increase in the number of fixations and a reduction in their duration was observed, while total reading time could be either increased or decreased. An increased fixation frequency was observed in most of the subjects, while a reduced duration only among individuals with shorter reading times in habitual condition.</p><p><strong>Discussion: </strong>In the habitual condition, EMG asymmetry influences reading patterns (more saccades/shorter fixations, less saccades/longer fixations) in our sample. The changes in text reading behavior elicited by occlusal correction can be explained by assuming that occlusal disharmony negatively interferes with the reading task by increasing the number of saccades necessary for text scanning. This finding may also indicate an increased difficulty in processing of visual information. The potential involvement of trigeminal pathways in the relation between occlusal factors and oculomotor control is discussed.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1409251"},"PeriodicalIF":3.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liliane Borel, Béatrice Alescio-Lautier, Jacques Léonard, Isabelle Régner
{"title":"Age-based stereotype threat effects on dynamic balance in healthy older adults","authors":"Liliane Borel, Béatrice Alescio-Lautier, Jacques Léonard, Isabelle Régner","doi":"10.3389/fnsys.2024.1309158","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1309158","url":null,"abstract":"IntroductionStereotype threat can lead older adults to perceive their experiences in a biased manner, giving rise to interfering thoughts and negative emotions that generate stress and anxiety. Negative beliefs about aging may serve as an additional factor that increases the need for attentional demand, potentially resulting in a performance level below their actual capabilities. In the present study, we asked whether negative aging stereotypes influence a dynamic balance task and explored the means to counteract them in healthy elderly participants.MethodsThe performance of balance was compared in two groups of participants aged 65 to 75 years (<jats:italic>n</jats:italic> = 22) under stereotype threat or reduced-threat situation. Balance abilities were tested under dynamic conditions, requiring participants to maintain balance on a moving platform and using a gradient of difficulty (with eyes open or closed, without or with foam). Postural performance was evaluated by means of posturographic evaluation of the center of pressure displacement and motion analysis. Additionally, we investigated the effects of stereotype threat on a preferred walking speed task and on the Timed Up and Go (TUG) test.ResultsParticipants under stereotype threat showed poorer balance, particularly in challenging conditions (eyes closed, on foam), with less effective body segments stabilization. Their postural stabilization on foam was worse compared to a solid surface. Conversely, those in the reduced threat condition maintained better body segment stabilization across all conditions, indicating consistent postural control regardless of the presence of foam. Stereotype threat did not affect preferred walking speed or the time to complete the “Time Up and Go” test.Discussion-conclusionThis study provides the first description of age-based stereotype threat effects on a dynamic balance task and how to counteract them in healthy older adults. We suggest that the decrease in postural performance observed in participants exposed to stereotype threat can be attributed to a split in attentional focus between negative intrusive thoughts and the attention needed for maintaining balance. These findings open new perspectives on how to overcome negative expectations when evaluating and training physical abilities, thereby contributing to fall prevention among older adults.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"14 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathan R. Smith, Shabeeb Ameen, Sierra N. Miller, James M. Kasper, Jennifer M. Schwarz, Jonathan D. Hommel, Ahmad Borzou
{"title":"The neuroanatomical organization of the hypothalamus is driven by spatial and topological efficiency","authors":"Nathan R. Smith, Shabeeb Ameen, Sierra N. Miller, James M. Kasper, Jennifer M. Schwarz, Jonathan D. Hommel, Ahmad Borzou","doi":"10.3389/fnsys.2024.1417346","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1417346","url":null,"abstract":"The hypothalamus in the mammalian brain is responsible for regulating functions associated with survival and reproduction representing a complex set of highly interconnected, yet anatomically and functionally distinct, sub-regions. It remains unclear what factors drive the spatial organization of sub-regions within the hypothalamus. One potential factor may be structural connectivity of the network that promotes efficient function with well-connected sub-regions placed closer together geometrically, i.e., the strongest axonal signal transferred through the shortest geometrical distance. To empirically test for such efficiency, we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, which provides a structural connectivity map of mouse brain regions derived from a series of viral tracing experiments. Using both cost function minimization and comparison with a weighted, sphere-packing ensemble, we demonstrate that the sum of the distances between hypothalamic sub-regions are not close to the minimum possible distance, consistent with prior whole brain studies. However, if such distances are weighted by the inverse of the magnitude of the connectivity, their sum is among the lowest possible values. Specifically, the hypothalamus appears within the top 94th percentile of neural efficiencies of randomly packed configurations and within one standard deviation of the median efficiency when packings are optimized for maximal neural efficiency. Our results, therefore, indicate that a combination of geometrical and topological constraints help govern the structure of the hypothalamus.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"7 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa Meyer-Baese, Nmachi Anumba, T. Bolt, L. Daley, T. J. LaGrow, Xiaodi Zhang, Nan Xu, Wen-Ju Pan, E. H. Schumacher, Shella Keilholz
{"title":"Variation in the distribution of large-scale spatiotemporal patterns of activity across brain states","authors":"Lisa Meyer-Baese, Nmachi Anumba, T. Bolt, L. Daley, T. J. LaGrow, Xiaodi Zhang, Nan Xu, Wen-Ju Pan, E. H. Schumacher, Shella Keilholz","doi":"10.3389/fnsys.2024.1425491","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1425491","url":null,"abstract":"A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention. To determine whether QPPs exhibit variations across brain conditions, the relative magnitude and distribution of the three strongest QPPs were examined in two scenarios. First, in data from the Human Connectome Project, the relative incidence and magnitude of the QPPs was examined over the course of the scan, under the hypothesis that increasing drowsiness would shift the expression of the QPPs over time. Second, using rs-fMRI in rats obtained with a novel approach that minimizes noise, the relative incidence and magnitude of the QPPs was examined under three different anesthetic conditions expected to create distinct types of brain activity. The results indicate that both the distribution of QPPs and their magnitude changes with brain state, evidence of the sensitivity of these large-scale patterns to widespread changes linked to alterations in brain conditions.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"13 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}