Randa Salalha, Micky Holzman, Federica Cruciani, Gil Ben David, Yam Amir, Firas Mawase, Kobi Rosenblum
{"title":"Licking microstructure behavior classifies a spectrum of emotional states in mice.","authors":"Randa Salalha, Micky Holzman, Federica Cruciani, Gil Ben David, Yam Amir, Firas Mawase, Kobi Rosenblum","doi":"10.3389/fnsys.2025.1623084","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring precise emotional tagging for taste information, with or without the use of words, is challenging. While affective taste valence and salience are core components of emotional experiences, traditional behavioral assays for taste preference, which often rely on cumulative consumption, lack the resolution to distinguish between different affective states, such as innate versus learned aversion, which are known to be mediated by distinct neural circuits. To overcome this limitation, we developed an open-source system for high-resolution microstructural analysis of licking behavior in freely moving mice. Our approach integrates traditional lick burst analysis with a proprietary software pipeline that utilizes interlick interval (ILI) distributions and principal component analysis (PCA) to create a multidimensional behavioral profile of the animal. Using this system, we characterized the licking patterns associated with innate appetitive, aversive, and neutral tastants. While conventional burst analysis failed to differentiate between two palatable stimuli (water and saccharin), our multidimensional approach revealed distinct and quantifiable behavioral signatures for each. Critically, this approach successfully dissociates innate and learned aversive taste valences, a distinction that cannot be achieved using standard metrics. By providing the designs for our custom-built setup and analysis software under an open-source license, this study offers a comprehensive and accessible methodology for examining hedonic responses in future studies. This powerful toolkit enhances our understanding of sensory valence processing and provides a robust platform for future investigations of the neurobiology of ingestive behavior.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"19 ","pages":"1623084"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2025.1623084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring precise emotional tagging for taste information, with or without the use of words, is challenging. While affective taste valence and salience are core components of emotional experiences, traditional behavioral assays for taste preference, which often rely on cumulative consumption, lack the resolution to distinguish between different affective states, such as innate versus learned aversion, which are known to be mediated by distinct neural circuits. To overcome this limitation, we developed an open-source system for high-resolution microstructural analysis of licking behavior in freely moving mice. Our approach integrates traditional lick burst analysis with a proprietary software pipeline that utilizes interlick interval (ILI) distributions and principal component analysis (PCA) to create a multidimensional behavioral profile of the animal. Using this system, we characterized the licking patterns associated with innate appetitive, aversive, and neutral tastants. While conventional burst analysis failed to differentiate between two palatable stimuli (water and saccharin), our multidimensional approach revealed distinct and quantifiable behavioral signatures for each. Critically, this approach successfully dissociates innate and learned aversive taste valences, a distinction that cannot be achieved using standard metrics. By providing the designs for our custom-built setup and analysis software under an open-source license, this study offers a comprehensive and accessible methodology for examining hedonic responses in future studies. This powerful toolkit enhances our understanding of sensory valence processing and provides a robust platform for future investigations of the neurobiology of ingestive behavior.
期刊介绍:
Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.