基于短期神经反馈训练的较高前额叶活动可以防止急性中风的工作记忆衰退。

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Masayuki Tetsuka, Takeshi Sakurada, Mayuko Matsumoto, Takeshi Nakajima, Mitsuya Morita, Shigeru Fujimoto, Kensuke Kawai
{"title":"基于短期神经反馈训练的较高前额叶活动可以防止急性中风的工作记忆衰退。","authors":"Masayuki Tetsuka,&nbsp;Takeshi Sakurada,&nbsp;Mayuko Matsumoto,&nbsp;Takeshi Nakajima,&nbsp;Mitsuya Morita,&nbsp;Shigeru Fujimoto,&nbsp;Kensuke Kawai","doi":"10.3389/fnsys.2023.1130272","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300420/pdf/","citationCount":"0","resultStr":"{\"title\":\"Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke.\",\"authors\":\"Masayuki Tetsuka,&nbsp;Takeshi Sakurada,&nbsp;Mayuko Matsumoto,&nbsp;Takeshi Nakajima,&nbsp;Mitsuya Morita,&nbsp;Shigeru Fujimoto,&nbsp;Kensuke Kawai\",\"doi\":\"10.3389/fnsys.2023.1130272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.</p>\",\"PeriodicalId\":12649,\"journal\":{\"name\":\"Frontiers in Systems Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Systems Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnsys.2023.1130272\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2023.1130272","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在阐明急性中风期的短期神经反馈训练是否会导致前额叶活动自我调节,从而对工作记忆产生积极的影响。共有30名急性中风患者进行了为期一天的功能性近红外光谱神经反馈训练,以增加他们的前额叶活动。采用随机、假对照、双盲研究方案比较神经反馈训练前后的工作记忆能力。工作记忆是通过一个需要空间信息保留的目标搜索任务来评估的。与基线相比,在神经反馈训练中表现出更高任务相关的右前额叶活动的患者,在干预后的空间工作记忆表现下降得到了预防。神经反馈训练的效果与患者的临床背景(如Fugl-Meyer评估评分和中风后的时间)无关。这些发现表明,即使是短期的神经反馈训练也可以增强急性中风患者的前额叶活动,并帮助维持他们在训练后的认知能力。然而,需要进一步研究个体患者临床背景,特别是认知障碍对神经反馈训练的影响。目前的研究结果为临床医生设计急性中风患者的神经康复方案提供了一个令人鼓舞的选择,包括神经反馈协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke.

Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke.

Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke.

Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke.

This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信