在后内侧前额叶皮层中,不重叠的神经元组对不同任务的行为反应决定因素进行编码。

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Muhammad Ali Haider Awan, Hajime Mushiake, Yoshiya Matsuzaka
{"title":"在后内侧前额叶皮层中,不重叠的神经元组对不同任务的行为反应决定因素进行编码。","authors":"Muhammad Ali Haider Awan,&nbsp;Hajime Mushiake,&nbsp;Yoshiya Matsuzaka","doi":"10.3389/fnsys.2023.1049062","DOIUrl":null,"url":null,"abstract":"<p><p>Higher mammals are able to simultaneously learn and perform a wide array of complex behaviors, which raises questions about how the neural representations of multiple tasks coexist within the same neural network. Do neurons play invariant roles across different tasks? Alternatively, do the same neurons play different roles in different tasks? To address these questions, we examined neuronal activity in the posterior medial prefrontal cortex of primates while they were performing two versions of arm-reaching tasks that required the selection of multiple behavioral tactics (i.e., the internal protocol of action selection), a critical requirement for the activation of this area. During the performance of these tasks, neurons in the pmPFC exhibited selective activity for the tactics, visuospatial information, action, or their combination. Surprisingly, in 82% of the tactics-selective neurons, the selective activity appeared in a particular task but not in both. Such task-specific neuronal representation appeared in 72% of the action-selective neurons. In addition, 95% of the neurons representing visuospatial information showed such activity exclusively in one task but not in both. Our findings indicate that the same neurons can play different roles across different tasks even though the tasks require common information, supporting the latter hypothesis.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947505/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-overlapping sets of neurons encode behavioral response determinants across different tasks in the posterior medial prefrontal cortex.\",\"authors\":\"Muhammad Ali Haider Awan,&nbsp;Hajime Mushiake,&nbsp;Yoshiya Matsuzaka\",\"doi\":\"10.3389/fnsys.2023.1049062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Higher mammals are able to simultaneously learn and perform a wide array of complex behaviors, which raises questions about how the neural representations of multiple tasks coexist within the same neural network. Do neurons play invariant roles across different tasks? Alternatively, do the same neurons play different roles in different tasks? To address these questions, we examined neuronal activity in the posterior medial prefrontal cortex of primates while they were performing two versions of arm-reaching tasks that required the selection of multiple behavioral tactics (i.e., the internal protocol of action selection), a critical requirement for the activation of this area. During the performance of these tasks, neurons in the pmPFC exhibited selective activity for the tactics, visuospatial information, action, or their combination. Surprisingly, in 82% of the tactics-selective neurons, the selective activity appeared in a particular task but not in both. Such task-specific neuronal representation appeared in 72% of the action-selective neurons. In addition, 95% of the neurons representing visuospatial information showed such activity exclusively in one task but not in both. Our findings indicate that the same neurons can play different roles across different tasks even though the tasks require common information, supporting the latter hypothesis.</p>\",\"PeriodicalId\":12649,\"journal\":{\"name\":\"Frontiers in Systems Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Systems Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnsys.2023.1049062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2023.1049062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高等哺乳动物能够同时学习和执行一系列复杂的行为,这就提出了一个问题,即多个任务的神经表征是如何在同一个神经网络中共存的。神经元在不同的任务中扮演不变的角色吗?或者,相同的神经元在不同的任务中扮演不同的角色吗?为了解决这些问题,我们检查了灵长类动物在执行两种需要选择多种行为策略(即行动选择的内部协议)的伸手任务时后内侧前额叶皮层的神经元活动,这是激活该区域的关键要求。在执行这些任务时,pmPFC中的神经元对策略、视觉空间信息、行动或它们的组合表现出选择性活动。令人惊讶的是,在82%的策略选择神经元中,选择性活动出现在一个特定的任务中,而不是同时出现在两个任务中。这种任务特异性神经元表征出现在72%的动作选择性神经元中。此外,95%代表视觉空间信息的神经元只在一个任务中表现出这种活动,而不是在两个任务中都表现出这种活动。我们的研究结果表明,相同的神经元可以在不同的任务中扮演不同的角色,即使这些任务需要共同的信息,这支持了后一种假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-overlapping sets of neurons encode behavioral response determinants across different tasks in the posterior medial prefrontal cortex.

Non-overlapping sets of neurons encode behavioral response determinants across different tasks in the posterior medial prefrontal cortex.

Non-overlapping sets of neurons encode behavioral response determinants across different tasks in the posterior medial prefrontal cortex.

Non-overlapping sets of neurons encode behavioral response determinants across different tasks in the posterior medial prefrontal cortex.

Higher mammals are able to simultaneously learn and perform a wide array of complex behaviors, which raises questions about how the neural representations of multiple tasks coexist within the same neural network. Do neurons play invariant roles across different tasks? Alternatively, do the same neurons play different roles in different tasks? To address these questions, we examined neuronal activity in the posterior medial prefrontal cortex of primates while they were performing two versions of arm-reaching tasks that required the selection of multiple behavioral tactics (i.e., the internal protocol of action selection), a critical requirement for the activation of this area. During the performance of these tasks, neurons in the pmPFC exhibited selective activity for the tactics, visuospatial information, action, or their combination. Surprisingly, in 82% of the tactics-selective neurons, the selective activity appeared in a particular task but not in both. Such task-specific neuronal representation appeared in 72% of the action-selective neurons. In addition, 95% of the neurons representing visuospatial information showed such activity exclusively in one task but not in both. Our findings indicate that the same neurons can play different roles across different tasks even though the tasks require common information, supporting the latter hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信