Fuel CellsPub Date : 2024-07-02DOI: 10.1002/fuce.202400059
Zhongyu Gan, Tao Chen, Rufeng Zhang, Ruixuan Zhang
{"title":"Study on the Performance Degradation of Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cell Caused by Freeze–Thaw Cycles","authors":"Zhongyu Gan, Tao Chen, Rufeng Zhang, Ruixuan Zhang","doi":"10.1002/fuce.202400059","DOIUrl":"10.1002/fuce.202400059","url":null,"abstract":"<div>\u0000 \u0000 <p>Durability of membrane electrode assembly (MEA) is a serious problem to be overcome in the commercial development of proton exchange membrane fuel cell (PEMFC). The change in volume due to water–ice conversion has an irreversible effect on the MEA, which affects the performance of PEMFC. For investigating the optimal initial water content of MEA that minimizes the impact on PEMFC performance after freeze–thaw (F/T) cycles, this study first measured the high-frequency resistance to determine the water content of MEA, and then subjected five MEAs with different water contents to 60 F/T cycles at −20°C to 30°C. The fuel cell output performance of five MEAs was found to be inconsistently degraded by polarization curve tests, with the cells of the two MEAs with the lowest and highest water contents exhibiting the worst output performance. Electrochemical impedance spectroscopy curves proved that the difference in resistance change after F/T cycles is one reason why the cell output performance is degraded differently. Finally, the degradation of cell performance was further explained by cyclic voltammetry. These results indicate that MEA has the best output performance for F/T cycles at an initial water content of 3.0.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-28DOI: 10.1002/fuce.202300263
Miriam Schüttoff, Christian Wachtel, Robert Schlumberger, Florian Wilhelm, Joachim Scholta, Markus Hölzle
{"title":"Development of Accelerated Durability Test Protocols for Polymer Electrolyte Membrane Fuel Cell Stacks Under Realistic Operating Conditions","authors":"Miriam Schüttoff, Christian Wachtel, Robert Schlumberger, Florian Wilhelm, Joachim Scholta, Markus Hölzle","doi":"10.1002/fuce.202300263","DOIUrl":"10.1002/fuce.202300263","url":null,"abstract":"<div>\u0000 \u0000 <p>Polymer electrolyte membrane fuel cell durability is still a major challenge. To overcome time-consuming durability tests, so-called accelerated durability tests (ADTs) are of urgent need. This work presents our recent results in developing ADT protocols in the context of realistic operating conditions, especially voltage clipping at 0.85 V. A 5500 h long-term test was carried out as a reference applying a realistic automotive drive cycle. Focusing on different stressors such as temperature, relative humidity (RH), and load profile four different ADT protocols of 1200 h duration were derived. Seven-cell short stacks with 240 cm<sup>2</sup> active area were used. Comparing cell voltage as a key indicator, an acceleration factor of 3–7 could be achieved. In-situ characterization techniques such as spatially resolved current measurement, cyclic voltammetry, and electrochemical impedance spectra were employed to investigate the influences of individual stressors on specific degradation mechanisms and components. The highest acceleration was observed in the mass transport region of ADTs addressing RH as a stressor, suggesting that RH cycling leads to increased degradation of hydrophobic surfaces. Increased temperature was found to accelerate primarily carbon support degradation. Accelerated catalyst aging seems to be low, demonstrating the effectiveness of voltage-clipping conditions. Our most promising ADT shows quite a homogeneous acceleration of voltage degradation across all current regions.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-26DOI: 10.1002/fuce.202200102
Khadidja Bouziane, E. M. Khetabi, R. Lachat, D. Candusso, Y. Meyer
{"title":"Methods to Measure the Electrical Resistances of a Gas Diffusion Layer Under Mechanical Compression","authors":"Khadidja Bouziane, E. M. Khetabi, R. Lachat, D. Candusso, Y. Meyer","doi":"10.1002/fuce.202200102","DOIUrl":"https://doi.org/10.1002/fuce.202200102","url":null,"abstract":"<p>In a proton exchange membrane fuel cell (FC), the gas diffusion layer (GDL) is identified as the component that is most affected by mechanical compression. In this article, a particular focus is provided on the methods to measure the three main electrical parameters—contact resistance, through-plane resistance, and in-plane resistance—of the GDL under compression. A nonlinear decrease of these resistances under compression is typically observed. In particular, an important decrease is observed from 0 to 2 MPa, then a lower one above 2 MPa. The smallest contact and in-plane resistances are measured for the graphitized straight carbon papers analyzing GDL resistances under compression gives a first approach to explaining ohmic losses in FCs as a large part of these losses is related to the GDL. This review would be helpful for researchers in better understanding ohmic losses and establishing a database of main GDL electrical resistances and their variations according to several operating parameters. These data could be used in design models to optimize GDL properties.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202200102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-26DOI: 10.1002/fuce.202400053
Hui Wang, Ying Du, XiangHua Wang, Lei Li, Yu Li, Zhiqiang Xu, Xianning Li
{"title":"Co-Substrate and Phosphate Buffer Enhanced Atrazine Degradation and Electricity Generation in a Bioelectrochemical System","authors":"Hui Wang, Ying Du, XiangHua Wang, Lei Li, Yu Li, Zhiqiang Xu, Xianning Li","doi":"10.1002/fuce.202400053","DOIUrl":"10.1002/fuce.202400053","url":null,"abstract":"<div>\u0000 \u0000 <p>Refractory organic pollutant removal can be enhanced by a bioelectrochemical system via the addition of electron donors/acceptors. In this study, a single-chamber soil microbial fuel cell (MFC) was constructed, and electricity production and atrazine removal efficiency were assessed using different co-substrates and phosphate buffer concentrations. The co-substrates compensated for the lack of soil organic matter and provided a sufficient carbon source for microorganisms to facilitate MFC electricity generation and efficient atrazine removal. The maximum voltage (94 mV), power density (39.41 mW m<sup>−2</sup>), removal efficiency (85.30%), and degradation rate (1.68 mg kg<sup>−1</sup> d<sup>−1</sup>) were highest in the soil MFCs with sodium acetate when compared with the other groups. Phosphate buffer significantly alleviated the dramatic soil pH change. The electricity generation and atrazine removal efficiency increased with the buffer concentration (0–0.10 g L<sup>−1</sup>). The maximum voltage (144 mV) and power density (89.35 mW m<sup>−2</sup>) were highest, total internal resistance (652 Ω) was lowest, and atrazine removal efficiency (90.95%) and degradation rate (1.54 mg kg<sup>−1</sup> d<sup>−1</sup>) were determined in the soil MFCs with the phosphate buffer concentration of 0.10 g L<sup>−1</sup>, and. These results indicate that the co-substrate and phosphate buffer can enhance the electricity generation of soil MFCs and atrazine removal.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-26DOI: 10.1002/fuce.202400035
Ryan Yow Zhong Yeo, Wei Lun Ang, Mimi Hani Abu Bakar, Manal Ismail, Mohd Nur Ikhmal Salehmin, Eileen Hao Yu, Swee Su Lim
{"title":"Multi-Array Tubular Microbial Fuel Cell-Based Biosensor with Membrane Electrode Assembled Air-Cathodes","authors":"Ryan Yow Zhong Yeo, Wei Lun Ang, Mimi Hani Abu Bakar, Manal Ismail, Mohd Nur Ikhmal Salehmin, Eileen Hao Yu, Swee Su Lim","doi":"10.1002/fuce.202400035","DOIUrl":"10.1002/fuce.202400035","url":null,"abstract":"<div>\u0000 \u0000 <p>Using microbial fuel cells (MFCs) as biosensors ensures a sustainable method for water quality detection. However, the research on MFC-based biosensors with a tubular setup is still scarce. In this study, a tubular multi-array MFC-based biosensor setup with air-cathodes was assembled under the membrane electrode assembly configuration. Three different materials, including carbon black (CB), Pt/C (PtC), and polyaniline (PANI), were synthesized and coated on the membrane-facing side of the air-cathode to demonstrate the effects of modified air-cathodes on the overall performance of the MFC-biosensors. Unmodified carbon cloths were used as anodes. Three days of startup period were required by the biosensors before producing an electrical signal output. The highest current density was obtained by the polytetrafluoroethylene (PTFE)/CB/PtC (0.31 A m<sup>−2</sup>) sample followed by PTFE/CB/PANI (0.09 A m<sup>−2</sup>), and lastly PTFE/CB (0.05 A m<sup>−2</sup>). The control (PTFE only) sample did not generate any noticeable electrical signal. The electrochemical impedance spectroscopy analysis showed that the incorporation of PtC on the PTFE/CB sample lowered the charge transfer resistance (<i>R</i><sub>ct</sub>), whereas the addition of PANI increased the <i>R</i><sub>ct</sub>. Despite the differences in <i>R</i><sub>ct</sub> values, both PTFE/CB/PtC and PTFE/CB/PANI samples demonstrated a better current density production than the PTFE/CB sample. Thus, modified air-cathodes further elevated the biosensor's performance.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-26DOI: 10.1002/fuce.202300196
C. T. Aisyah Sarjuni, Ahmad Adam Danial Shahril, Hock Chin Low, Bee Huah Lim
{"title":"Bipolar Plate Design Assessment: Proton Exchange Membrane Fuel Cell and Water Electrolyzer","authors":"C. T. Aisyah Sarjuni, Ahmad Adam Danial Shahril, Hock Chin Low, Bee Huah Lim","doi":"10.1002/fuce.202300196","DOIUrl":"https://doi.org/10.1002/fuce.202300196","url":null,"abstract":"<div>\u0000 \u0000 <p>Proton exchange membrane fuel cells (PEMFCs) as power generators and proton exchange membrane water electrolyzers (PEMWEs) as hydrogen fuel producers play critical roles in implementing hydrogen energy. The bipolar plates (BPPs) in both PEMFC and PEMWE facilitate the distribution of reactants and products, providing electrical connectivity in a series of singular cells. Although both systems are categorized under the same PEM spectrum, the differing reaction mechanisms require specialized plate properties to achieve optimum performance. This short review analyzes the characteristics of BPPs in both PEMFC and PEMWE, with a focus on the plate material, coating, and flow field. This short review concluded that the polymer composite graphite–based BPPs are the most feasible for PEMFC with no coating needed. PEMWE needs SS316 as a BPP material with a conductive coating to withstand the highly corrosive oxygen evolution reaction at the anode. The serpentine flow field showed dominance in PEMFC stack performance due to even fluid distribution and efficient liquid water drainage. However, its high-pressure drop contributes to greater parasitic power. PEMWEs commonly adopt the parallel flow field for its lower contact resistance and bubble formation for efficient mass transport toward the cathode.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-26DOI: 10.1002/fuce.202400068
Patrick Pretschuh, Andreas Egger, Priya Paulachan, Johanna Schöggl, Roland Brunner, Edith Bucher
{"title":"Cobalt-Free High-Entropy Perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2FeO3–δ Solid Oxide Cell Air Electrode With Enhanced Performance","authors":"Patrick Pretschuh, Andreas Egger, Priya Paulachan, Johanna Schöggl, Roland Brunner, Edith Bucher","doi":"10.1002/fuce.202400068","DOIUrl":"https://doi.org/10.1002/fuce.202400068","url":null,"abstract":"<p>This study investigates the novel cobalt-free high-entropy perovskite, La<sub>0.2</sub>Pr<sub>0.2</sub>Nd<sub>0.2</sub>Sm<sub>0.2</sub>Sr<sub>0.2</sub>FeO<sub>3–δ</sub> (LPNSSF), as an air electrode material for solid oxide cells (SOCs). When testing a button cell with a single-phase LPNSSF electrode, a current density of 0.55 A cm<sup>−2</sup> is obtained at 0.7 V in fuel cell mode at 800°C. In order to mitigate the moderate electronic conductivity of LPNSSF, two approaches are explored. Incorporating a Co-free highly conductive perovskite, LaNi<sub>0.6</sub>Fe<sub>0.4</sub>O<sub>3–δ</sub> (LNF), either as an LPNSSF–LNF composite electrode or as a current collector layer (CCL), enhances the performance to 0.61 and 0.66 A cm<sup>−2</sup>, respectively, under the same conditions. Microstructural features are studied by electron microscopy and show a rather dense structure of the CCL. Optimization of the current collector increases the current density further to 0.96 A cm<sup>−2</sup> at 0.7 V in a 5 × 5 cm<sup>2</sup> anode-supported cell at 800°C. This cell exhibits good long-term stability in electrolysis mode in H<sub>2</sub>-H<sub>2</sub>O with 80% humidification. Continuous polarization of −0.69 A cm<sup>−2</sup> is sustained for 1000 h, with an average degradation rate of 10 mV kh<sup>−1</sup> after an initial run-in phase. These findings demonstrate the promising performance and durability of LPNSSF as cobalt-free SOC air electrode.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-06-26DOI: 10.1002/fuce.202400045
Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong
{"title":"Phosphoric Acid Electrolyte Uptake and Retention Analysis on UiO-66-NH2 Polybenzimidazole Nanocomposite Membranes","authors":"Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong","doi":"10.1002/fuce.202400045","DOIUrl":"10.1002/fuce.202400045","url":null,"abstract":"<div>\u0000 \u0000 <p>High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have a major advantage over low-temperature fuel cells due to their better tolerance to higher carbon monoxide content in the hydrogen feed, simpler fuel processing, and better heat management. However, a key challenge in the development of HT-PEMFCs is the potential for acid leaching from phosphoric acid-doped polybenzimidazole membranes, which can reduce overall fuel cell performance. This study investigates the effect of post-synthetic modification of the UiO-66-NH<sub>2</sub> metal–organic framework (MOF) on the acid electrolyte uptake and retention of MOF/poly(4,4ʹ-diphenylether-5,5ʹ-bibenzimidazole) (OPBI) nanocomposite membranes. Thermogravimetric analysis (TGA) was used to correlate the membrane properties with acid uptake. This work revealed that the presence of MOF with functional groups that can form hydrogen bonds with phosphoric acid molecules was able to alleviate the acid retention in the OPBI membrane with lower acid uptake. TGA demonstrated that the lower bound moisture content in the nanocomposite membranes was correlated to the lower acid uptake. In addition, the thermal stability of the nanocomposite membranes was found to improve.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-05-25DOI: 10.1002/fuce.202300241
Fernando A. Rojas, Carlos Hernández-Benitez, Víctor Ramírez, Ioannis Ieropoulous, Luis A. Godínez, Irma Robles, David B. Meza, Francisco J Rodríguez-Valadez
{"title":"Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell","authors":"Fernando A. Rojas, Carlos Hernández-Benitez, Víctor Ramírez, Ioannis Ieropoulous, Luis A. Godínez, Irma Robles, David B. Meza, Francisco J Rodríguez-Valadez","doi":"10.1002/fuce.202300241","DOIUrl":"10.1002/fuce.202300241","url":null,"abstract":"<p>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi-cylindrical ceramic MFC was designed and constructed using a low-cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm<sup>−2</sup> for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4-compartment module that produced 90 mWm<sup>−2</sup> with one single module and 95 mWm<sup>−2</sup> with a serial arrangement of two modules.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-05-19DOI: 10.1002/fuce.202300199
Pooja S. Deshpande, Thulasi Radhakrishnan, Bhagavatula L. V. Prasad
{"title":"Establishing a new efficiency descriptor for methanol oxidation reaction and its validation with commercially available Pt-based catalysts","authors":"Pooja S. Deshpande, Thulasi Radhakrishnan, Bhagavatula L. V. Prasad","doi":"10.1002/fuce.202300199","DOIUrl":"10.1002/fuce.202300199","url":null,"abstract":"<p>Direct methanol fuel cells (DMFCs) have received a lot of attention in recent years as promising technology for generating clean and efficient energy. In DMFC, the anode catalyst is a vital component because it is involved in the oxidation of methanol, which produces electrons that can be used as an energy source. Cyclic voltammetry (CV) is commonly used to test the characteristics of the electrode materials before they are employed in the actual fuel cell. Interestingly in the case of DMFCs CV also is a useful technique to obtain vital information about the performance and expected efficiency of the electrodes. In general, the CV of methanol electrooxidation for Pt-based catalysts has two peaks, <i>I<sub>f</sub></i> in the forward scan (anodic scan) and <i>I<sub>b</sub></i> in the backward scan (cathodic scan). The ratio of these two peaks (<i>I<sub>f</sub>/I<sub>b</sub></i>) is the most commonly used criterion for investigating CO poisoning in catalysts. However, there is a great deal of ambiguity surrounding this criterion, owing to the genesis of <i>I<sub>b</sub></i>. Addressing this we present here a new criterion to evaluate the efficiency of the catalyst using the same CV technique. We validate this newly proposed criterion with commercial Pt/C (comm. Pt/C) and other commercially available alloy catalysts.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}