Fuel CellsPub Date : 2024-10-29DOI: 10.1002/fuce.2024701013
Michael H. Eikerling, Olivier Bucheli, Yannis Ieropoulos, Ludovic Jourdin, Petra Bele
{"title":"Research and Integration of Hydrogen Technologies to Access Economic Sustainability (EFCF2023)","authors":"Michael H. Eikerling, Olivier Bucheli, Yannis Ieropoulos, Ludovic Jourdin, Petra Bele","doi":"10.1002/fuce.2024701013","DOIUrl":"https://doi.org/10.1002/fuce.2024701013","url":null,"abstract":"<p>The 27th edition of the European Fuel Cell Forum with a focus on Low Temperature Electrolyzers, Fuel Cells, and H<sub>2</sub> Processing saw the return to the normal in-person conference modus. With the hitherto highest number of participants of the low-temperature conference branch, an excellent line-up of oral and poster presentations, and an overall positive vibe in conversations, the conference asserted the standing of the EFCF as the prime forum for scientific-technical exchanges on electrochemical hydrogen technologies in Europe.</p><p>The drive towards hydrogen as the currency of a sustainable global economy is as dynamic as ever. Yet, enabling the epochal energy transition through market-ready water electrolysis and fuel cell technologies remains an ambitious undertaking, especially when facing the immediacy of rapidly transforming climate and ecological systems. It needs unprecedented alignment of efforts from scientists, technology developers, and system integrators, driven by a high awareness of socioeconomic and environmental needs and relying on unwavering government support.</p><p>‘Integration’, the motto of the EFCF2023 conference, refers to the realization that any challenge related to the performance or stability of fuel cell or electrolyzer technologies, even if it originates deep at the materials level, will not be solved in isolation. It necessitates integration from an early stage, to be achieved scale-to-scale, component-to-component, and lab-to-lab, and combining modeling and characterization in meaningful ways. Challenged by the socioeconomic and political landscape and aligning with this motto, EFCF2023 kept its focus on fundamental understanding of electrocatalyst materials and reaction kinetics, as well as progresses and current issues for fuel cell and electrolyzer systems and their integration across the different physical levels. Furthermore, contributions related to advanced modelling and diagnostics, as well as engineering, system integration, and demonstration of real-world devices.</p><p>In total 172 papers were presented at EFCF2023, of which 108 have been presented orally. Several poster presentations also prepared as an MP4 record presentation accessible to conference participants through EFCF's website also after the conference, similar to the recorded oral presentations. Finally, a limited number of scientific papers have been selected to become part of this Special Issue.</p><p>Alongside EFCF2023, the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023) was held. This event sparked lively discussions on the use of microbial cells and enzymes as ‘catalysts’ in various electrochemical systems, ranging from electricity generation in microbial fuel cells to the conversion of carbon dioxide into chemicals and fuels in microbial electrosynthesis systems. To bring these technologies to industrial scale, it is essential to explore both fundamental and applied engineering aspects—a","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.2024701013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-10-29DOI: 10.1002/fuce.2024701014
{"title":"Cover Fuel Cells 5/2024","authors":"","doi":"10.1002/fuce.2024701014","DOIUrl":"https://doi.org/10.1002/fuce.2024701014","url":null,"abstract":"<p>The EFCF conferences in series continued with 27th edition of the European Fuel Cell Forum with a focus on Low Temperature Electrolyzers, Fuel Cells & H<sub>2</sub> Processing, and for the first time alongside with the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023), taking place between 4 – 7 of July 2023 in Lucerene, Switzerland.</p><p>The 27th edition of the European Fuel Cell Forum with the motto ‘Integration’ provided a global overview of the current ECFC technology developments within a well-balanced program, covering technology development and scientific achievements, from fundamental research to the latest achievements in terms of demonstrations.</p><p>Also, for the first time the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023) was held together with the EFCF forum. The MEEP2023 symposium covered topics such as microbial biofilm functions, electron transfer mechanisms, novel materials and bio-hybrids, multiscale mass transport, and scale-up challenges.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.2024701014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-10-14DOI: 10.1002/fuce.202300237
Clemens Fink, Joel Mata Edjokola, Marijo Telenta, Merit Bodner
{"title":"Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation","authors":"Clemens Fink, Joel Mata Edjokola, Marijo Telenta, Merit Bodner","doi":"10.1002/fuce.202300237","DOIUrl":"https://doi.org/10.1002/fuce.202300237","url":null,"abstract":"<div>\u0000 \u0000 <p>In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm<sup>2</sup> under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-09-07DOI: 10.1002/fuce.202300231
Pau Bosch-Jimenez, Clara Corbella, Ainhoa Gaudes, Sonia Sanchis, Pau Lopez, Daniele Molognoni, Alicia Villazán Cabero, Jose María de Cuenca, Eduard Borràs
{"title":"Electrowetland Pilot of 50 m2: Operation and Characterization Under Real Conditions for 1 Year","authors":"Pau Bosch-Jimenez, Clara Corbella, Ainhoa Gaudes, Sonia Sanchis, Pau Lopez, Daniele Molognoni, Alicia Villazán Cabero, Jose María de Cuenca, Eduard Borràs","doi":"10.1002/fuce.202300231","DOIUrl":"10.1002/fuce.202300231","url":null,"abstract":"<div>\u0000 \u0000 <p>Traditional wastewater treatment plants (WWTPs) consume a significant amount of energy to clean wastewater. However, for medium- and small-scale WWTPs, it is crucial to have an energetically self-sustained treatment. In this regard, novel low-energy demand treatment systems, such as nature-based solutions (NBS), are highly suitable alternatives. Constructed wetlands coupled with microbial fuel cells (MFC), referred to as electrowetlands (EWs), are NBS able to treat wastewater while recovering electricity. In this study, initially, various granular carbon materials were tested as anode materials in laboratory-scale MFCs, and anthracite was selected due to its higher electrochemical activity. Then, pre-pilot scale tests were conducted, evaluating different EW configurations. The one consisting in a horizontal anode yielded the best wastewater treatment efficiencies (chemical oxygen demand [COD] degradation greater than 90%) and electricity production (11 mW m<sup>−2</sup>; 260 mWh day<sup>−1</sup> m<sup>−2</sup>). Finally, a 50 m<sup>2</sup> pilot was constructed in Valladolid, studying its performance under real conditions for 1 year. The pilot showed robust and stable performance, achieving high wastewater treatment efficiencies (COD degradation >85%, outflow COD of 100 ppm) and generating 115 Wh in 1 year (power density of 0.4 mW m<sup>−2</sup>).</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-08-29DOI: 10.1002/fuce.202300227
M. A. Schmid, J. Kaczerowski, F. Wilhelm, J. Scholta, B. Müller, M. Hölzle
{"title":"Aging Effects Observed in Automotive Fuel Cell Stacks by Applying a New Realistic Test Protocol and Humidity Control","authors":"M. A. Schmid, J. Kaczerowski, F. Wilhelm, J. Scholta, B. Müller, M. Hölzle","doi":"10.1002/fuce.202300227","DOIUrl":"10.1002/fuce.202300227","url":null,"abstract":"<div>\u0000 \u0000 <p>Traditional automotive proton exchange membrane fuel cell (PEMFC) endurance testing relies on the fuel cell (FC) dynamic load cycle (FC-DLC) protocol, which inadequately reflects real-world driving conditions. To address this limitation the “Investigations on degradation mechanisms and Definition of protocols for PEM Fuel cells Accelerated Stress Testing” (ID-FAST) consortium defined the new representative “ID-FAST driving load cycle,” a novel approach capturing the load distribution, transitions, temperature variations, and humidity fluctuations experienced by FCs in real-world operation. We demonstrate the ID-FAST driving cycle itself and the integration into a realistic durability test program for FC test benches and present the resulting test data. Furthermore, we showcase its implementation within an accelerated stress testing (AST) protocol, highlighting its potential to significantly reduce testing time by accelerating degradation. Additionally, a novel method for highly dynamic humidity adjustment within test benches is introduced. By overcoming limitations of existing methods and incorporating the ID-FAST driving cycle, this work paves the way for a new era of efficient and realistic FC endurance testing, ultimately contributing to the development of more robust and durable automotive FC stacks.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-08-08DOI: 10.1002/fuce.202300238
P. Othman, N. Karim, Febdian Rusydi
{"title":"Selective Oxidation of Glycerol to Glycolic and Oxalic Acids for Direct Glycerol Fuel Cell","authors":"P. Othman, N. Karim, Febdian Rusydi","doi":"10.1002/fuce.202300238","DOIUrl":"https://doi.org/10.1002/fuce.202300238","url":null,"abstract":"The direct glycerol fuel cell (DGFC) is a promising application, although the catalyst has limits and could be improved. This study used density functional theory (DFT) calculations to elucidate how the addition of silver (Ag) to a palladium (Pd) catalyst can change the mechanism of the glycerol oxidation reaction (GEOR). It was discovered that the glycerol easily oxidized at the primary carbon at the start of the reaction. Glyceraldehyde and glyceric acid are produced as intermediary products due to primary carbon oxidation using Pd3–Ag1 (111). The addition of Ag aided C–C cleavage during the reaction, converting glyceric acid to glycolic acid rather than tartronic acid. The selectivity of high‐value molecules such as glycolic and oxalic acid was more likely to increase due to the early C–C splitting. At the end of the possible chemical pathways, oxalic acid or formic acid can be generated with the nine electrons that can be transferred. This work's catalyst model and mechanism can be employed with a new alloy catalyst combination and modification or tested with a different type of alcohol or polyol as fuel. DFT analysis of the mechanism allows for more flexible improvement and design in the search for novel and better catalysts.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-08-08DOI: 10.1002/fuce.202300213
Christian Rodenbücher, Carsten Korte, Yingzhen Chen, Klaus Wippermann, Piotr M. Kowalski, Sangwon Kim, Jungtae Kim, Rolf Hempelmann, BeomJun Kim
{"title":"High-Temperature Polymer Electrolyte Fuel Cells Based on Protic Ionic Liquids","authors":"Christian Rodenbücher, Carsten Korte, Yingzhen Chen, Klaus Wippermann, Piotr M. Kowalski, Sangwon Kim, Jungtae Kim, Rolf Hempelmann, BeomJun Kim","doi":"10.1002/fuce.202300213","DOIUrl":"10.1002/fuce.202300213","url":null,"abstract":"<p>A hydrogen-based energy system will be the backbone of a future energy grid using renewable energies. It is widely accepted that polymer electrolyte membrane fuel cells (PEMFCs) are promising converters of chemical energy stored as hydrogen into electrical energy. An increase of the operation temperature from below 80°C to above about 160°C is considered beneficial, as it would allow for much simpler water management and the use of waste heat. Here, we are investigating protic ionic liquids (PILs) immobilized in a polybenzimidazole polymer as electrolytes for high-temperature PEMFCs. Ionic liquids are promising for fuel cell applications as they provide high thermal and chemical stability and high proton conductivity. In contrast to aqueous electrolytes, ionic liquids form a dense layered structure at the electrode–electrolyte interface that depends on the potential and on the content of residual water in the electrolyte. We investigate how PILs interact with the host polymer of the membrane revealing that porous polymer structures can be formed by solution casting, which allows for an encapsulation of the ionic liquid within the pores. After doping the polymer with small amounts of phosphoric acid, the membranes showed reasonable conductivity and fuel cell performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202300213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure","authors":"Yifei Cao, Yanfeng Xing, Juyong Cao, Xiaobing Zhang, Linfa Peng","doi":"10.1002/fuce.202400102","DOIUrl":"10.1002/fuce.202400102","url":null,"abstract":"<div>\u0000 \u0000 <p>The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three-dimensional (3D) GDL deformation model with a 3D two-phase PEMFC model, employing a four-term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade-off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-08-02DOI: 10.1002/fuce.202400088
Pengsha Zhao, Xinying Liu, Zheng Wang, Jie Min, Yan Dang, Yu Hong, Dezhi Sun
{"title":"Photosynthesis Characterization of Mutant Algae and Enhanced Carbon Fixation of Algae–Bacteria Symbiosis Treating Municipal Wastewater","authors":"Pengsha Zhao, Xinying Liu, Zheng Wang, Jie Min, Yan Dang, Yu Hong, Dezhi Sun","doi":"10.1002/fuce.202400088","DOIUrl":"https://doi.org/10.1002/fuce.202400088","url":null,"abstract":"Algae–bacteria symbiosis (ABS) as a sustainable wastewater treatment process has drawn mounting attention. However, nontrivial CO<jats:sub>2</jats:sub> emissions were still present in municipal wastewater treatment due to the inadequate carbon fixation efficiency of microalgae under low carbon level. The obtained UV‐induced mutant <jats:italic>Chlorella vulgaris</jats:italic> MIHL4 performed higher carbon fixation capability (14.5%) and biomass productivity (25.3%) with improved photosynthetic fluorescence parameters and enzyme activities compared to wild‐type <jats:italic>C. vulgaris</jats:italic>. Transcriptome analyses showed pathways related to the carbon fixation and carbon catabolism were significantly up‐regulated in MIHL4. Compared with ABS inoculated with wild‐type <jats:italic>C. vulgaris</jats:italic>, CO<jats:sub>2</jats:sub> emissions were significantly reduced by 32.1%–38.3% in ABS inoculated with MIHL4, where the biomass growth, metabolic activity, and sludge granulation were enhanced. <jats:italic>Chlorella</jats:italic> responsible for carbon fixation was the dominant population (19.3%) in ABS inoculated with MIHL4, in which the abundance of functional microbes and genes associated with photosynthesis as well as nutrient removal increased.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuel CellsPub Date : 2024-07-27DOI: 10.1002/fuce.202300267
Nur Afifah Mat Razali, Norilhamiah Yahya, Nurul Atiqah Izzati Md Ishak, Nabila A. Karim, Siti Kartom Kamarudin
{"title":"Revolutionizing Energy: Tailored ZnOFe2O3/rGO for Glucose Oxidation in Fuel Cell Application","authors":"Nur Afifah Mat Razali, Norilhamiah Yahya, Nurul Atiqah Izzati Md Ishak, Nabila A. Karim, Siti Kartom Kamarudin","doi":"10.1002/fuce.202300267","DOIUrl":"https://doi.org/10.1002/fuce.202300267","url":null,"abstract":"Metal‐based catalysts such as platinum and gold are frequently employed as electrocatalysts. However, they faced significant limitations, including high cost and susceptibility to poisoning and degradation, hindering their extensive utilization. To overcome these challenges, metal oxide offers promising alternatives for its fast electron transfer rate, large surface area, and high electrocatalytic activity in electrochemical oxidation materials. In this work, ZnO doped with Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> was scattered on reduced graphene oxide (rGO) to form a ZnOFe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/rGO hybrid by a hydrothermal method for glucose oxidation. The synthesized ZnOFe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/rGO composite was thoroughly characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and X‐ray photoelectron spectra (XPS) analysis, and the electrochemical performance was evaluated using cyclic voltammetry. ZnO particles are highly uniform flowerlike particles interacting with uniform‐size spherical‐like particles of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> in ZnO–Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> supported on the rGO. The result reveals that interaction between ZnO–Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanocomposites supported onto graphene sheets reduces agglomeration compared to parent nanoparticles. An increase in surface‐to‐volume ratio exhibits more surface‐active sites for electrooxidation and thus improved catalytic performance by a negatively shifted potential of −36.62 mV versus Ag/AgCl, representing appropriate electrocatalysts for use as the anode in glucose fuel cells. The maximum current density of 0.5201 mA cm<jats:sup>−2</jats:sup> was achieved in the electrochemical glucose oxidation equipped with ZnOFe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/rGO, which was almost 20 and 3 times higher than ZnO and Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, respectively. The synergistic interaction of ZnO–Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> supported on rGO showed a vital role as an electrocatalytic mediator to facilitate the charge transfer for glucose oxidation.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}