丝网印刷与渗透法制备固体氧化物燃料电池纳米阳极

IF 3.1 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2025-09-07 DOI:10.1002/fuce.70017
Martin Michael Juckel, Yanting Liu, André Weber, Olivier Guillon, Norbert H. Menzler
{"title":"丝网印刷与渗透法制备固体氧化物燃料电池纳米阳极","authors":"Martin Michael Juckel,&nbsp;Yanting Liu,&nbsp;André Weber,&nbsp;Olivier Guillon,&nbsp;Norbert H. Menzler","doi":"10.1002/fuce.70017","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials were used for the investigation of electrochemical performance tests of solid oxide fuel cells. Two different approaches were chosen to produce symmetrical nanoparticle (NP)-based cells: screen printing and infiltration. Screen printing, as a state-of-the-art manufacturing process, leads to unstable NiO/gadolinium-doped ceria (GDC) conductive layers, which either show delamination or flaking after sintering or electrochemical testing. The infiltration of an NiO scaffold with GDC NPs and the infiltration of a GDC scaffold with NiO NPs, on the other hand, were used as a solution for these problems, and stable symmetrical cells with particle sizes down to 10 nm were produced. All stable infiltrated cells were microstructurally and electrochemically characterized and showed an improved electrochemical performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.70017","citationCount":"0","resultStr":"{\"title\":\"Nanostructured Anodes for Solid Oxide Fuel Cells Obtained by Screen-Printing and Infiltration\",\"authors\":\"Martin Michael Juckel,&nbsp;Yanting Liu,&nbsp;André Weber,&nbsp;Olivier Guillon,&nbsp;Norbert H. Menzler\",\"doi\":\"10.1002/fuce.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterials were used for the investigation of electrochemical performance tests of solid oxide fuel cells. Two different approaches were chosen to produce symmetrical nanoparticle (NP)-based cells: screen printing and infiltration. Screen printing, as a state-of-the-art manufacturing process, leads to unstable NiO/gadolinium-doped ceria (GDC) conductive layers, which either show delamination or flaking after sintering or electrochemical testing. The infiltration of an NiO scaffold with GDC NPs and the infiltration of a GDC scaffold with NiO NPs, on the other hand, were used as a solution for these problems, and stable symmetrical cells with particle sizes down to 10 nm were produced. All stable infiltrated cells were microstructurally and electrochemically characterized and showed an improved electrochemical performance.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.70017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

采用纳米材料对固体氧化物燃料电池的电化学性能进行了研究。选择了两种不同的方法来生产对称的纳米颗粒(NP)细胞:丝网印刷和浸润。丝网印刷作为一种先进的制造工艺,会导致不稳定的NiO/钆掺杂铈(GDC)导电层,在烧结或电化学测试后会出现分层或剥落。另一方面,采用NiO支架与NiO NPs浸润GDC支架作为解决这些问题的方法,制备了粒径小至10 nm的稳定对称细胞。所有稳定的浸润电池都进行了微观结构和电化学表征,并表现出改善的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanostructured Anodes for Solid Oxide Fuel Cells Obtained by Screen-Printing and Infiltration

Nanostructured Anodes for Solid Oxide Fuel Cells Obtained by Screen-Printing and Infiltration

Nanomaterials were used for the investigation of electrochemical performance tests of solid oxide fuel cells. Two different approaches were chosen to produce symmetrical nanoparticle (NP)-based cells: screen printing and infiltration. Screen printing, as a state-of-the-art manufacturing process, leads to unstable NiO/gadolinium-doped ceria (GDC) conductive layers, which either show delamination or flaking after sintering or electrochemical testing. The infiltration of an NiO scaffold with GDC NPs and the infiltration of a GDC scaffold with NiO NPs, on the other hand, were used as a solution for these problems, and stable symmetrical cells with particle sizes down to 10 nm were produced. All stable infiltrated cells were microstructurally and electrochemically characterized and showed an improved electrochemical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信