Martin Michael Juckel, Yanting Liu, André Weber, Olivier Guillon, Norbert H. Menzler
{"title":"丝网印刷与渗透法制备固体氧化物燃料电池纳米阳极","authors":"Martin Michael Juckel, Yanting Liu, André Weber, Olivier Guillon, Norbert H. Menzler","doi":"10.1002/fuce.70017","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials were used for the investigation of electrochemical performance tests of solid oxide fuel cells. Two different approaches were chosen to produce symmetrical nanoparticle (NP)-based cells: screen printing and infiltration. Screen printing, as a state-of-the-art manufacturing process, leads to unstable NiO/gadolinium-doped ceria (GDC) conductive layers, which either show delamination or flaking after sintering or electrochemical testing. The infiltration of an NiO scaffold with GDC NPs and the infiltration of a GDC scaffold with NiO NPs, on the other hand, were used as a solution for these problems, and stable symmetrical cells with particle sizes down to 10 nm were produced. All stable infiltrated cells were microstructurally and electrochemically characterized and showed an improved electrochemical performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.70017","citationCount":"0","resultStr":"{\"title\":\"Nanostructured Anodes for Solid Oxide Fuel Cells Obtained by Screen-Printing and Infiltration\",\"authors\":\"Martin Michael Juckel, Yanting Liu, André Weber, Olivier Guillon, Norbert H. Menzler\",\"doi\":\"10.1002/fuce.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterials were used for the investigation of electrochemical performance tests of solid oxide fuel cells. Two different approaches were chosen to produce symmetrical nanoparticle (NP)-based cells: screen printing and infiltration. Screen printing, as a state-of-the-art manufacturing process, leads to unstable NiO/gadolinium-doped ceria (GDC) conductive layers, which either show delamination or flaking after sintering or electrochemical testing. The infiltration of an NiO scaffold with GDC NPs and the infiltration of a GDC scaffold with NiO NPs, on the other hand, were used as a solution for these problems, and stable symmetrical cells with particle sizes down to 10 nm were produced. All stable infiltrated cells were microstructurally and electrochemically characterized and showed an improved electrochemical performance.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.70017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Nanostructured Anodes for Solid Oxide Fuel Cells Obtained by Screen-Printing and Infiltration
Nanomaterials were used for the investigation of electrochemical performance tests of solid oxide fuel cells. Two different approaches were chosen to produce symmetrical nanoparticle (NP)-based cells: screen printing and infiltration. Screen printing, as a state-of-the-art manufacturing process, leads to unstable NiO/gadolinium-doped ceria (GDC) conductive layers, which either show delamination or flaking after sintering or electrochemical testing. The infiltration of an NiO scaffold with GDC NPs and the infiltration of a GDC scaffold with NiO NPs, on the other hand, were used as a solution for these problems, and stable symmetrical cells with particle sizes down to 10 nm were produced. All stable infiltrated cells were microstructurally and electrochemically characterized and showed an improved electrochemical performance.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.