A Study on the Synergistic Effects of Multiple Parameters on the Performance and Durability of Proton Exchange Membrane Fuel Cells: Based on Numerical Simulation and Experimental Validation
{"title":"A Study on the Synergistic Effects of Multiple Parameters on the Performance and Durability of Proton Exchange Membrane Fuel Cells: Based on Numerical Simulation and Experimental Validation","authors":"Yuan Li, Jianshan Lin","doi":"10.1002/fuce.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study employs an integrated approach combining three-dimensional multiphase numerical simulations with experimental validation. A refined single-channel proton exchange membrane fuel cell (PEMFC) model, verified for grid independence, was developed. User-defined functions (UDFs) were implemented to accurately describe key processes, including electrochemical reactions, water phase change (liquid/ice), and transport phenomena. A systematic simulation analysis was conducted to elucidate the influence of operating temperature (50–70°C), anode/cathode inlet humidity (50–100% relative humidity), and gas diffusion layer (GDL) porosity (0.4–0.8) on cell output characteristics (polarization curves, power density) and internal mass transport dynamics. Concurrently, cyclic voltammetry (CV) and linear sweep voltammetry (LSV) experiments were performed to deeply investigate the electrochemical performance degradation and microstructural evolution of electrodes with varying water contents under freeze–thaw cycling. The results demonstrate that elevating the operating temperature to 60–70°C significantly enhances cell performance, primarily attributable to increased membrane conductivity and optimized water management. A synergistic optimization effect was identified between reactant gas humidity and GDL porosity. At 60°C, a combination of 75% anode humidity and 100% cathode humidity achieved an optimal balance between output performance and operational stability. Increasing GDL porosity to 0.6–0.8 effectively enhanced reactant gas transport and liquid water removal, reducing current density decay during cold start (−10°C) by approximately 50% and significantly mitigating mass transport blockage and performance degradation caused by ice formation. Freeze–thaw cycling experiments further revealed that electrode water content is a critical factor determining its durability. Flooded conditions exacerbated structural damage from freezing, leading to persistent performance decay, whereas lower water content conditions effectively preserved electrode structural integrity and catalytic activity. This research elucidates the interactive mechanisms of water–thermal–mass transport under multiphysics coupling, providing a theoretical foundation and practical design guidelines for optimizing performance and enhancing the durability of PEMFCs under complex operating conditions.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs an integrated approach combining three-dimensional multiphase numerical simulations with experimental validation. A refined single-channel proton exchange membrane fuel cell (PEMFC) model, verified for grid independence, was developed. User-defined functions (UDFs) were implemented to accurately describe key processes, including electrochemical reactions, water phase change (liquid/ice), and transport phenomena. A systematic simulation analysis was conducted to elucidate the influence of operating temperature (50–70°C), anode/cathode inlet humidity (50–100% relative humidity), and gas diffusion layer (GDL) porosity (0.4–0.8) on cell output characteristics (polarization curves, power density) and internal mass transport dynamics. Concurrently, cyclic voltammetry (CV) and linear sweep voltammetry (LSV) experiments were performed to deeply investigate the electrochemical performance degradation and microstructural evolution of electrodes with varying water contents under freeze–thaw cycling. The results demonstrate that elevating the operating temperature to 60–70°C significantly enhances cell performance, primarily attributable to increased membrane conductivity and optimized water management. A synergistic optimization effect was identified between reactant gas humidity and GDL porosity. At 60°C, a combination of 75% anode humidity and 100% cathode humidity achieved an optimal balance between output performance and operational stability. Increasing GDL porosity to 0.6–0.8 effectively enhanced reactant gas transport and liquid water removal, reducing current density decay during cold start (−10°C) by approximately 50% and significantly mitigating mass transport blockage and performance degradation caused by ice formation. Freeze–thaw cycling experiments further revealed that electrode water content is a critical factor determining its durability. Flooded conditions exacerbated structural damage from freezing, leading to persistent performance decay, whereas lower water content conditions effectively preserved electrode structural integrity and catalytic activity. This research elucidates the interactive mechanisms of water–thermal–mass transport under multiphysics coupling, providing a theoretical foundation and practical design guidelines for optimizing performance and enhancing the durability of PEMFCs under complex operating conditions.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.