Caizhi Zhang, Yuqi Qiu, Christoph Hametner, Zhongbao Wei, Alessandro Ferrara, Tao Zeng, Jun Li, Xiaoxia Ren
{"title":"Energy Efficiency Analysis and Decoupling Control Design of Air Supply for Vehicle Fuel Cell System","authors":"Caizhi Zhang, Yuqi Qiu, Christoph Hametner, Zhongbao Wei, Alessandro Ferrara, Tao Zeng, Jun Li, Xiaoxia Ren","doi":"10.1002/fuce.70016","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The reliability and efficiency of proton exchange membrane fuel cells largely depend on the performance of the air supply system, making high-control accuracy essential. First, the impact of control accuracy on the energy consumption and efficiency of the air compressor is analyzed. Subsequently, a fuel cell system model is established based on experimental data to enable rapid verification of control strategies. Finally, three decoupling control algorithms (feedforward decoupling, feedback decoupling, and diagonal matrix decoupling) are compared in detail. The results show that the diagonal matrix decoupling algorithm has higher stability and minimizes the coupling between pressure and flow. Experimental verification on the fuel cell system test bench further shows that the diagonal matrix decoupling algorithm can limit the flow and pressure fluctuations to less than 0.5 g/s and 0.5 kPa, respectively, and effectively prevent compressor surge during startup. This method provides theoretical guidance for achieving high-precision control of the air supply system of fuel cell vehicles.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The reliability and efficiency of proton exchange membrane fuel cells largely depend on the performance of the air supply system, making high-control accuracy essential. First, the impact of control accuracy on the energy consumption and efficiency of the air compressor is analyzed. Subsequently, a fuel cell system model is established based on experimental data to enable rapid verification of control strategies. Finally, three decoupling control algorithms (feedforward decoupling, feedback decoupling, and diagonal matrix decoupling) are compared in detail. The results show that the diagonal matrix decoupling algorithm has higher stability and minimizes the coupling between pressure and flow. Experimental verification on the fuel cell system test bench further shows that the diagonal matrix decoupling algorithm can limit the flow and pressure fluctuations to less than 0.5 g/s and 0.5 kPa, respectively, and effectively prevent compressor surge during startup. This method provides theoretical guidance for achieving high-precision control of the air supply system of fuel cell vehicles.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.