Zhengling Lei, Chaojun Guan, Tao Liu, Haibo Huo, Fang Wang, Guoquan Yao
{"title":"基于自抗扰控制的固体氧化物燃料电池电压和燃料利用控制策略","authors":"Zhengling Lei, Chaojun Guan, Tao Liu, Haibo Huo, Fang Wang, Guoquan Yao","doi":"10.1002/fuce.202400146","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Solid oxide fuel cell (SOFC) systems have become a research focus because of their clean and high-efficiency properties. Control of output voltage and fuel utilization is critical to the energy management for multi-energy systems incorporating SOFC energy supply. However, maintaining precise control of the system's voltage in the presence of perturbations can be challenging. Moreover, the system's voltage control process can lead to fuel utilization fluctuations, which may affect the economy and safety. The design of the controller must meet both of these requirements. The stringent control requirements lead to poor parameter adaptability of existing controllers. This paper designs a nonlinear function and adopts a nonlinear/linear active disturbance rejection controller (ADRC) based on state switching to solve the output voltage tracking control problem of SOFC and maintain the fuel utilization rate in the ideal range. The simulation experimental results show that the proposed method has the advantages of strong and superior parameter adaptability with less control effort, which provides theoretical guidance for the design of the output voltage controller of the actual SOFC system.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage and Fuel Utilization Control Strategy for Solid Oxide Fuel Cell Based on Active Disturbance Rejection Control\",\"authors\":\"Zhengling Lei, Chaojun Guan, Tao Liu, Haibo Huo, Fang Wang, Guoquan Yao\",\"doi\":\"10.1002/fuce.202400146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Solid oxide fuel cell (SOFC) systems have become a research focus because of their clean and high-efficiency properties. Control of output voltage and fuel utilization is critical to the energy management for multi-energy systems incorporating SOFC energy supply. However, maintaining precise control of the system's voltage in the presence of perturbations can be challenging. Moreover, the system's voltage control process can lead to fuel utilization fluctuations, which may affect the economy and safety. The design of the controller must meet both of these requirements. The stringent control requirements lead to poor parameter adaptability of existing controllers. This paper designs a nonlinear function and adopts a nonlinear/linear active disturbance rejection controller (ADRC) based on state switching to solve the output voltage tracking control problem of SOFC and maintain the fuel utilization rate in the ideal range. The simulation experimental results show that the proposed method has the advantages of strong and superior parameter adaptability with less control effort, which provides theoretical guidance for the design of the output voltage controller of the actual SOFC system.</p>\\n </div>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400146\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Voltage and Fuel Utilization Control Strategy for Solid Oxide Fuel Cell Based on Active Disturbance Rejection Control
Solid oxide fuel cell (SOFC) systems have become a research focus because of their clean and high-efficiency properties. Control of output voltage and fuel utilization is critical to the energy management for multi-energy systems incorporating SOFC energy supply. However, maintaining precise control of the system's voltage in the presence of perturbations can be challenging. Moreover, the system's voltage control process can lead to fuel utilization fluctuations, which may affect the economy and safety. The design of the controller must meet both of these requirements. The stringent control requirements lead to poor parameter adaptability of existing controllers. This paper designs a nonlinear function and adopts a nonlinear/linear active disturbance rejection controller (ADRC) based on state switching to solve the output voltage tracking control problem of SOFC and maintain the fuel utilization rate in the ideal range. The simulation experimental results show that the proposed method has the advantages of strong and superior parameter adaptability with less control effort, which provides theoretical guidance for the design of the output voltage controller of the actual SOFC system.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.