基于自抗扰控制的固体氧化物燃料电池电压和燃料利用控制策略

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2024-10-27 DOI:10.1002/fuce.202400146
Zhengling Lei, Chaojun Guan, Tao Liu, Haibo Huo, Fang Wang, Guoquan Yao
{"title":"基于自抗扰控制的固体氧化物燃料电池电压和燃料利用控制策略","authors":"Zhengling Lei,&nbsp;Chaojun Guan,&nbsp;Tao Liu,&nbsp;Haibo Huo,&nbsp;Fang Wang,&nbsp;Guoquan Yao","doi":"10.1002/fuce.202400146","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Solid oxide fuel cell (SOFC) systems have become a research focus because of their clean and high-efficiency properties. Control of output voltage and fuel utilization is critical to the energy management for multi-energy systems incorporating SOFC energy supply. However, maintaining precise control of the system's voltage in the presence of perturbations can be challenging. Moreover, the system's voltage control process can lead to fuel utilization fluctuations, which may affect the economy and safety. The design of the controller must meet both of these requirements. The stringent control requirements lead to poor parameter adaptability of existing controllers. This paper designs a nonlinear function and adopts a nonlinear/linear active disturbance rejection controller (ADRC) based on state switching to solve the output voltage tracking control problem of SOFC and maintain the fuel utilization rate in the ideal range. The simulation experimental results show that the proposed method has the advantages of strong and superior parameter adaptability with less control effort, which provides theoretical guidance for the design of the output voltage controller of the actual SOFC system.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage and Fuel Utilization Control Strategy for Solid Oxide Fuel Cell Based on Active Disturbance Rejection Control\",\"authors\":\"Zhengling Lei,&nbsp;Chaojun Guan,&nbsp;Tao Liu,&nbsp;Haibo Huo,&nbsp;Fang Wang,&nbsp;Guoquan Yao\",\"doi\":\"10.1002/fuce.202400146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Solid oxide fuel cell (SOFC) systems have become a research focus because of their clean and high-efficiency properties. Control of output voltage and fuel utilization is critical to the energy management for multi-energy systems incorporating SOFC energy supply. However, maintaining precise control of the system's voltage in the presence of perturbations can be challenging. Moreover, the system's voltage control process can lead to fuel utilization fluctuations, which may affect the economy and safety. The design of the controller must meet both of these requirements. The stringent control requirements lead to poor parameter adaptability of existing controllers. This paper designs a nonlinear function and adopts a nonlinear/linear active disturbance rejection controller (ADRC) based on state switching to solve the output voltage tracking control problem of SOFC and maintain the fuel utilization rate in the ideal range. The simulation experimental results show that the proposed method has the advantages of strong and superior parameter adaptability with less control effort, which provides theoretical guidance for the design of the output voltage controller of the actual SOFC system.</p>\\n </div>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400146\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物燃料电池(SOFC)系统因其清洁、高效的特性而成为研究热点。输出电压和燃料利用率的控制是包含SOFC能源供应的多能源系统能源管理的关键。然而,在存在扰动的情况下保持对系统电压的精确控制是具有挑战性的。此外,系统的电压控制过程会导致燃料利用率波动,影响经济性和安全性。控制器的设计必须同时满足这两个要求。严格的控制要求导致现有控制器的参数适应性差。本文设计一个非线性函数,采用基于状态切换的非线性/线性自抗扰控制器(ADRC)解决SOFC输出电压跟踪控制问题,使燃油利用率保持在理想范围内。仿真实验结果表明,该方法具有参数适应性强、控制工作量小的优点,为实际SOFC系统输出电压控制器的设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage and Fuel Utilization Control Strategy for Solid Oxide Fuel Cell Based on Active Disturbance Rejection Control

Solid oxide fuel cell (SOFC) systems have become a research focus because of their clean and high-efficiency properties. Control of output voltage and fuel utilization is critical to the energy management for multi-energy systems incorporating SOFC energy supply. However, maintaining precise control of the system's voltage in the presence of perturbations can be challenging. Moreover, the system's voltage control process can lead to fuel utilization fluctuations, which may affect the economy and safety. The design of the controller must meet both of these requirements. The stringent control requirements lead to poor parameter adaptability of existing controllers. This paper designs a nonlinear function and adopts a nonlinear/linear active disturbance rejection controller (ADRC) based on state switching to solve the output voltage tracking control problem of SOFC and maintain the fuel utilization rate in the ideal range. The simulation experimental results show that the proposed method has the advantages of strong and superior parameter adaptability with less control effort, which provides theoretical guidance for the design of the output voltage controller of the actual SOFC system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信