丝网印刷催化剂油墨与提高过程稳定性的PEM燃料电池生产

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2024-12-15 DOI:10.1002/fuce.202400158
Linda Ney, Nikolas Seidl, Rajveer Singh, Patrick Schneider, Dominik Stross, Andreas Göppentin, Sebastian Tepner, Matthias Klingele, Roman Keding
{"title":"丝网印刷催化剂油墨与提高过程稳定性的PEM燃料电池生产","authors":"Linda Ney,&nbsp;Nikolas Seidl,&nbsp;Rajveer Singh,&nbsp;Patrick Schneider,&nbsp;Dominik Stross,&nbsp;Andreas Göppentin,&nbsp;Sebastian Tepner,&nbsp;Matthias Klingele,&nbsp;Roman Keding","doi":"10.1002/fuce.202400158","DOIUrl":null,"url":null,"abstract":"<p>Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400158","citationCount":"0","resultStr":"{\"title\":\"Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production\",\"authors\":\"Linda Ney,&nbsp;Nikolas Seidl,&nbsp;Rajveer Singh,&nbsp;Patrick Schneider,&nbsp;Dominik Stross,&nbsp;Andreas Göppentin,&nbsp;Sebastian Tepner,&nbsp;Matthias Klingele,&nbsp;Roman Keding\",\"doi\":\"10.1002/fuce.202400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.</p>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400158\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400158","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

目前用于PEM燃料电池电极制造的最先进的涂层技术,如槽模涂层,使用封闭的油墨储层,允许低沸点溶剂作为催化剂油墨固体组分的分散基质。将这种低沸点油墨应用于将催化剂油墨暴露在空气中的印刷方法,如平板丝网印刷,由于这些溶剂的连续蒸发,导致生产过程不稳定且不可扩展。在本研究中,共测试了12种不同溶剂在平板丝网印刷时的工艺稳定性和电化学性能。油墨特性,如接触角,流变学和沉降实验,被量化,以揭示最合适的一组溶剂,使使用开放的水库印刷方法,如平板丝网印刷。此外,催化膜的电化学原位表征表明,1,2-丙二醇和1-庚醇是结合过程稳定性和高燃料电池性能的溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production

Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production

Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信