{"title":"Electronic Structure Simulations of the Platinum/Support/Ionomer Interface in Proton Exchange Membrane Fuel Cells","authors":"Xin Gui, Alexander A. Auer","doi":"10.1002/fuce.202400117","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present electronic structure calculations to quantify and rationalize the interactions between catalyst, support, ionomer, and active molecular species in proton exchange membrane fuel cells. Quantifying interaction energies and their scaling with size allows us to rationalize and compare the fundamental driving forces behind structure formation and material properties. Our basic approach involves simplifying the most important interactions between different components using smaller model systems, such as limited-size platinum nanoparticles, polyaromatic hydrocarbons (graphene flakes), and fragments of various functional units of the Nafion ionomer while applying unbiased first-principles (density functional theory) simulation methods. To guide this quantification, we propose an analysis based on the linear dependence of interaction energy on the number of interacting atom pairs in the interface. This enables us to compare and categorize interactions between catalyst, ionomer, and support with interactions like catalyst–reactant and catalyst–catalyst poison.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400117","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present electronic structure calculations to quantify and rationalize the interactions between catalyst, support, ionomer, and active molecular species in proton exchange membrane fuel cells. Quantifying interaction energies and their scaling with size allows us to rationalize and compare the fundamental driving forces behind structure formation and material properties. Our basic approach involves simplifying the most important interactions between different components using smaller model systems, such as limited-size platinum nanoparticles, polyaromatic hydrocarbons (graphene flakes), and fragments of various functional units of the Nafion ionomer while applying unbiased first-principles (density functional theory) simulation methods. To guide this quantification, we propose an analysis based on the linear dependence of interaction energy on the number of interacting atom pairs in the interface. This enables us to compare and categorize interactions between catalyst, ionomer, and support with interactions like catalyst–reactant and catalyst–catalyst poison.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.