Eghosa N. Ekhaese, Praise O. Akindoyin, Ibrahim A. Mohammed
{"title":"Frontiers | Sustainable building materials (SBMs) and their impact on displaced persons health/wellbeing in selected IDP facilities, Nigeria","authors":"Eghosa N. Ekhaese, Praise O. Akindoyin, Ibrahim A. Mohammed","doi":"10.3389/fmats.2024.1337843","DOIUrl":"https://doi.org/10.3389/fmats.2024.1337843","url":null,"abstract":"There are 70.8 million Internally Displaced Persons in the world. In Sub-Saharan Africa Nigeria has 16.5 million people and the highest displacement rate. IDPs in Nigeria need shelters primarily to mitigate homelessness and improve their quality of health through sustainable building materials (SBM) used in design and construction. The study aimed to investigate SBMs and their impact on the health/wellbeing of Displaced Persons in IDP facilities to promote the health benefits of SBMs. Assess the SBMs used to design IDP facilities in the three case studies; ascertain the health/wellbeing components of the SBMs; and analyse the impact of SBM on displaced persons’ health/wellbeing. The study used the mixed (quality and quantitative) research method while leveraging the case study design. The research philosophy is pragmatism, and the research paradigms are interpretivist and constructivist. The data collection instrument includes a questionnaire survey for quantitative data, an in-depth interview guide, and an observation schedule (direct and participant). The findings reveal that SBMs have some health benefits, SBMs have impacts on the IDPs’ wellbeing, and SBMs can be sourced locally. According to the study, SBMs can reflect the people’s culture, making IDPs homely, happy and comfortable with positive psychosocial impacts that may improve their mental health.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ronglin Tu, Xiaoming Liu, Lin Xu, Xuemin Yao, Ran Zhang, Jiadi Li, Wenjun Zhang, Jinrong Liu, Xiuping Wu, Bing Li
{"title":"The current status and trends of oral bone regeneration materials: a bibliometric analysis from 1991 to 2023","authors":"Ronglin Tu, Xiaoming Liu, Lin Xu, Xuemin Yao, Ran Zhang, Jiadi Li, Wenjun Zhang, Jinrong Liu, Xiuping Wu, Bing Li","doi":"10.3389/fmats.2024.1420900","DOIUrl":"https://doi.org/10.3389/fmats.2024.1420900","url":null,"abstract":"Objectives: Due to the complexity and importance of oral bone structure, oral bone regeneration materials differ from those used in other parts of the body. To study the research trends and hotspots of oral bone regeneration materials, this paper conducts a bibliometric analysis of related papers from 1991 to 2023 (retrieved on 27 September 2023).Materials and methods: Using bibliometric methods, two visualization metric software, Citespace and VOSviewer, were used to analyze 1217 papers in SCIE, including paper analysis, author analysis, country and institution analysis, keyword analysis, and cited literature analysis.Results: (Alavi et al., Oral Surgery Oral Medicine Oral Pathology Oral Radiology, 2023, 136 (5), 554–68) The number of papers is generally increasing and gradually stabilizing; (Xia et al., Bioactive Materials, 2021, 6 (11), 4186–208) Buser D is the most influential author, while Jung, Ronald E has the highest number of papers and total citations; (Wagner et al., Stem Cells Translational Medicine, 2019, 8 (10), 1084–91) The United States has the highest number of papers and citation frequency. The University of Bern and the University of Zurich in Switzerland are not only the institutions with the most papers but also the institutions with the most collaborations with other institutions. (Gallego et al., T Engineering Part A, 2010, 16 (4), 1179–87) Many research directions have persisted for decades since their inception. The field of oral bone regeneration materials is constantly developing and improving. In recent years, the research direction in this field may mainly focus on the role of blood cells and proteins in bone regeneration. (Wang et al., Japanese Dental Science Review, 2022, 58, 233–48). In recent years, the types of cited literature mainly include barrier membranes, alveolar ridge augmentation, bone graft materials, histological examination, and <jats:italic>in vivo</jats:italic> animal experimental models.Conclusion: The United States and Switzerland have a significant influence in the field of oral bone regeneration materials. The research hotspot in recent years is mainly on tissue engineering materials. However, traditional materials still occupy a large proportion in clinical treatment or research. In addition, the combined use of new and old materials has gradually become one of the research hotspots in this field.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omid Ghaderi, Mehran Zare, Behzad Niroumand, Benjamin C. Church, Pradeep K. Rohatgi
{"title":"Selected challenges in solidification processing of graphene nanoplatelets (GNPs) reinforced aluminum alloys composites","authors":"Omid Ghaderi, Mehran Zare, Behzad Niroumand, Benjamin C. Church, Pradeep K. Rohatgi","doi":"10.3389/fmats.2024.1363270","DOIUrl":"https://doi.org/10.3389/fmats.2024.1363270","url":null,"abstract":"Solidification processing of aluminum graphene composite is an attractive option for synthesis of metal matrix composites. Graphene reinforced aluminum metal matrix composites (GAMMCs) are of interest due to the low density and ultrahigh physical and mechanical properties of Graphene which can improve the properties of Al-Graphene composites. However, solidification processing of aluminum graphene composites has served challenges, including agglomeration of reinforcement and porosity resulting in decrease in properties above 0.five to three wt% graphene. Also, the graphene surface can react with molten aluminum alloys to form aluminum carbide. Challenges with particle distribution and porosity are frequently caused by the poor wetting of reinforcement by melt, requiring additions of selected wetting agents. The other problems include movement of reinforcement within the melt due to density differences and convection leading to nonuniform distribution of reinforcements. The graphene reinforcements can be pushed by solidifying interfaces under certain conditions during solidification leading to segregation of reinforcements in the interdendritic regions. The paper critically analyzes the above problems related to solidification processing of Aluminum- Graphene composites which has not been done in previous publications aluminum-graphene composites. The objective of this paper is to examine the challenges, and suggest possible solutions including addition of elements like silicon and magnesium to aluminum melt, coating graphene with metals like nickel and copper, controlling rate of advancement and nature of advancing solid liquid interface in a manner that they engulf graphene with dendrites or grains.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving stability and safety in concrete structures against high-energy projectiles: a machine learning perspective","authors":"Qianhui Zhang, Yuzhen Jin, Guangzhi Wang, Qingmei Sun, Hamzeh Ghorbani","doi":"10.3389/fmats.2024.1416918","DOIUrl":"https://doi.org/10.3389/fmats.2024.1416918","url":null,"abstract":"Concrete structures are commonly used as secure settlements and strategic shelters due to their inherent strength, durability, and wide availability. Examining the robustness and integrity of strategic concrete structures in the face of super-energy projectiles is of utmost significance in safeguarding vital infrastructure sectors, ensuring the well-being of individuals, and advancing the course of worldwide sustainable progress. This research focuses on forecasting the penetration depth (BPD) through the application of robust models, such as Multilayer Perceptron (MLP), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest Neighbors (KNN) as ML models. The dataset used consists of 1,020 data points sourced from the National Institute of Standards and Technology (NIST), encompassing various parameters such as cement content (Cp), ground granulated blast-furnace slag (GGBFS), fly ash content (FA), water portion (Wp), superplasticizer content (Sp), coarse aggregate content (CA), fine aggregate content (FAA), concrete sample age (t), concrete compressive strength (CCS), gun type (G-type), bullet caliber (B-Cali), bullet weight (Wb), and bullet velocity (Vb). Feature selection techniques revealed that the MLP model, incorporating eight input variables (FA, CA, Sp, GGBFS, Cp, t, FAA, and CCS), provides the most accurate predictions for BPD across the entire dataset. Comparing the four models used in this study, KNN demonstrates distinct superiority over the other methods. KNN, a non-parametric ML model used for classification and regression, possesses several advantages, including simplicity, non-parametric nature, no training requirements, robustness to noisy data, suitability for large datasets, and interpretability. The results reveal that KNN outperforms the other models presented in this paper, exhibiting an R<jats:sup>2</jats:sup> value of 0.9905 and an RMSE value of 0.1811 cm, signifying higher accuracy in its predictions compared to the other models. Finally, based on the error analysis across iterations, it is evident that the final accuracy error of the KNN model surpasses that of the SVM, MLP, and LightGBM models, respectively.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nilesh Agarwal, Aditya Rangamani, Kathan Bhavsar, Shreyash Santosh Virnodkar, Aldrin Antonio Agostinho Fernandes, Utkarsh Chadha, Divyansh Srivastava, Albert E. Patterson, Vezhavendhan Rajasekharan
{"title":"An overview of carbon-carbon composite materials and their applications","authors":"Nilesh Agarwal, Aditya Rangamani, Kathan Bhavsar, Shreyash Santosh Virnodkar, Aldrin Antonio Agostinho Fernandes, Utkarsh Chadha, Divyansh Srivastava, Albert E. Patterson, Vezhavendhan Rajasekharan","doi":"10.3389/fmats.2024.1374034","DOIUrl":"https://doi.org/10.3389/fmats.2024.1374034","url":null,"abstract":"Carbon-carbon composites are advanced materials known for their high strength, high-temperature stability, and superior thermal conductivity. Mechanical properties such as tensile strength, flexural strength, and compressive strength are examined, as well as thermal properties like the coefficient of thermal expansion and thermal conductivity, to understand the characteristics of the composite. Carbon-carbon composites are ideal for the aerospace industry’s need for lightweight and high-performance materials. Tribological and surface properties are relevant to this discussion, given the use case of carbon-carbon composites in extreme conditions, the effect of exposing the composite to different fluids and the change in friction and wear properties. Coatings can protect the composite from environmental factors such as UV radiation, oxidation, and erosion. Self-healing composites that can repair themselves can increase the lifespan of structures while reducing maintenance costs. These have been used in aerospace applications such as airplane braking systems, rocket nozzles, and re-entry vehicle heat shields. Furthermore, researchers have recently addressed the problem of finishing and drilling without delamination and loss of properties, and this study looks into unconventional methods that can be adopted for the same. This study aims to provide an overview of the current state of carbon-carbon composite materials and their applications.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global trend and hotspot of resin materials for dental caries repair: a bibliometric analysis","authors":"Baodi Han, Lian Wang","doi":"10.3389/fmats.2024.1337972","DOIUrl":"https://doi.org/10.3389/fmats.2024.1337972","url":null,"abstract":"ObjectiveThe objective of this study is to explore the current research status, key areas, and future development trends in the field of resin materials for dental caries repair through an objective and quantitative analysis of the literature.MethodsA search was conducted on the Web of Science Core Collection using “dental cavity” and “resin” as keywords, covering the period from 2000 to 2023. Data including author names, journals, countries, institutions, keywords, and citation rates were extracted. The collected data was subjected to statistical analysis using bibliometrics methodology, and visual knowledge maps were generated using software like CiteSpace 6.2.R4, Microsoft365, and R.ResultsA total of 4800 articles were retrieved, involving 13,423 authors, 2654 institutions, 76 countries, and 560 journals. The number of publications and cumulative publications in this field showed an increasing trend, reaching a peak in 2022. Dental Materials was the journal with the highest number of publications, cumulative publications, and citation rates. XU HHK was the most prolific author in terms of publications and citations. The University of Maryland was the institution with the highest number of publications. Brazil was the country with the highest number of publications. The USA had the highest level of collaboration with other countries. Collaboration between different authors, institutions, and countries in this field was relatively close, which contributed to the rapid development of resin materials for caries repair. The current research focus is mainly on the nature of dental caries, characteristics of resin materials, and bonding strength of adhesives. Enhancing the bioactivity and remineralization of resin materials, advanced antibacterial strategies, longevity and durability of resin restorations, nanotechnology, and material innovation, as well as digital dentistry, will receive increased attention as future research trends.ConclusionResin materials for dental caries repair have received significant attention. Future research should combine nanotechnology and big data analysis to investigate the mechanisms of dental caries occurrence and development, enhance the performance and longevity of resin materials, and conduct high-quality, large-scale empirical research.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Foti, Benjamin Clépoint, Aurore Fraix, Luisa D’Urso, Angela De Bonis, Cristina Satriano
{"title":"A simple approach for CTAB-free and biofunctionalized gold nanorods to construct photothermal active nanomedicine for potential in vivo applications in cancer cells and scar treatment","authors":"Alice Foti, Benjamin Clépoint, Aurore Fraix, Luisa D’Urso, Angela De Bonis, Cristina Satriano","doi":"10.3389/fmats.2024.1381176","DOIUrl":"https://doi.org/10.3389/fmats.2024.1381176","url":null,"abstract":"Cetyltrimethylammonium bromide (CTAB), a surfactant commonly used in the synthesis of gold nanorods (AuNR), presents challenges owing to cytotoxicity in biological applications, limiting their biomedical applicability, particularly in cancer therapy. This study introduces a straightforward methodology for the effective removal of CTAB by utilizing a combination of ligand replacement and surface bioconjugation processes that efficiently eliminates CTAB and simultaneously functionalizes nanorods with hyaluronic acid (HA) to enhance biocompatibility and introduce targeting capabilities toward cancer cells. The surface chemistry modification of CTAB-capped and CTAB-free AuNR, before and after the functionalization with HA, was scrutinized by UV–visible, surface-enhanced Raman scattering (SERS), attenuated total reflectance (ATR) Fourier-transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies. The surface charge, size, and morphology of the different plasmonic nanoparticles were characterized by zeta potential, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The photothermal response was assessed by laser irradiation and thermal camera measurements. Proof-of-work <jats:italic>in vitro</jats:italic> cellular experiments of cytotoxicity and oxidative stress were carried out on prostate cancer cells, PC-3, overexpressing the CD44 cell surface receptor specifically recognized by HA, in comparison with the CD44-negative murine fibroblasts (3T3 cell line) by MTT and MitoSOX assays, respectively. Cellular uptake and organelle alteration were scrutinized by confocal laser scanning microscopy (LSM), while the perturbative effects on cell migration were studied by optical microscopy (wound scratch assay). The study’s findings offer a promising pathway to tune the gold nanorod properties in cancer treatment by reducing cytotoxicity and enhancing targeted therapeutic efficacy, as well as in the control of scar tissue formation.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chou-Yi Husen, Uday Abdul-Reda Hussein, Amjed Qasim Mohammed, Eman Ramzy Muhammad, Kadhum Al-Majdi, Usama Kadem Radi, Ahmed Ali Ami, Anaheed Hussein Kareem, Irfan Ahmad, Saeb Jasim Al-Shuwaili, Ahmed Huseen Redhee
{"title":"Synthesis, characterization, and biological evaluation of novel Polyvinylpyrrolidone nanofibers containing Cassia angustifolia Vahl methanolic extract","authors":"Chou-Yi Husen, Uday Abdul-Reda Hussein, Amjed Qasim Mohammed, Eman Ramzy Muhammad, Kadhum Al-Majdi, Usama Kadem Radi, Ahmed Ali Ami, Anaheed Hussein Kareem, Irfan Ahmad, Saeb Jasim Al-Shuwaili, Ahmed Huseen Redhee","doi":"10.3389/fmats.2024.1406368","DOIUrl":"https://doi.org/10.3389/fmats.2024.1406368","url":null,"abstract":"This study involved the preparation of the Saudi Arabian <jats:italic>Cassia angustifolia</jats:italic> Vahl methanolic extract and the production of polyvinylpyrrolidone (PVP) nanofibers that contained the Saudi Arabian <jats:italic>C. angustifolia</jats:italic> Vahl methanolic extract. The reason for using polyvinylpyrrolidone is its bioactivity and its physical and chemical properties. The structure and characterization of the newly synthesized nanofiber were confirmed using the Fourier-transform infrared (FTIR) spectrum, elemental analysis, scanning electron microscopy (SEM) image, N<jats:sub>2</jats:sub> adsorption–desorption curve, hydrophilicity, compressive strength, and flexural strength. The biological activity, including anticancer properties against skin cancer cells and bone cancer cells and antibacterial activity against Gram-positive and Gram-negative strains, was assessed. The average diameter and the specific surface area of the synthesized polyvinylpyrrolidone nanofibers containing the Saudi Arabian <jats:italic>Cassia angustifolia</jats:italic> Vahl methanolic extract were 87 nm and 1,108 m<jats:sup>2</jats:sup>/g, respectively. High hydrophilicity compared to polyvinylpyrrolidone (contact angle of synthetic nanofibers was 21° and for polyvinylpyrrolidone was 52°), high compressive strength compared to polyvinylpyrrolidone (61.23 N/mm<jats:sup>2</jats:sup> and 34.52 N/mm<jats:sup>2</jats:sup>, respectively), and high flexural strength compared to polyvinylpyrrolidone (16.1 N/mm<jats:sup>2</jats:sup> and 11.4 N/mm<jats:sup>2</jats:sup>, respectively) were other characteristics of the synthesized polyvinylpyrrolidone nanofibers containing the Saudi Arabian <jats:italic>Cassia angustifolia</jats:italic> Vahl methanolic extract. In the biological activities of the synthesized nanofiber, unique properties were observed. Regarding the anticancer activity, the IC<jats:sub>50</jats:sub> values against skin cancer cells and bone cancer cells were observed to be 19.59 μg/mL and 29.57 μg/mL, respectively. For the antimicrobial activity, the MIC value between 4 and 128 mg/mL was observed. The biological activities of the synthesized polyvinylpyrrolidone nanofibers containing the Saudi Arabian <jats:italic>Cassia angustifolia</jats:italic> Vahl methanolic extract were higher than those of the Saudi Arabian <jats:italic>Cassia angustifolia</jats:italic> Vahl methanolic extract. The biological properties can be enhanced by various factors, including the high specific surface area of the synthesized nanofiber.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huang Jianqiu, Jin Zhuo, Wang Haiping, Ling Tao, Peng Xuejun, Tang Yu, Liu Qin, Li Xi
{"title":"A theoretical model and verification of soil column deformation under impact load based on the Duncan-Chang model","authors":"Huang Jianqiu, Jin Zhuo, Wang Haiping, Ling Tao, Peng Xuejun, Tang Yu, Liu Qin, Li Xi","doi":"10.3389/fmats.2024.1401018","DOIUrl":"https://doi.org/10.3389/fmats.2024.1401018","url":null,"abstract":"The dynamic compaction method has been widely adopted in foundation treatment to densify the soil fillers. However, for the complexity of the impact behavior and soil mechanical properties, the theoretical research of dynamic compaction lags behind its practice for complex soil properties and stress paths. This paper presents a theoretical model applied to describe soil column plastic deformation under impact load. The relationship among stress increment, strain increment, and plastic wave velocity was derived from the aspect of propagation characteristics of stress waves in soil first. Combined with the Duncan-Chang Model, a one-dimensional theoretical model was established then. A numerical model was developed further to check the performance of the model. It showed that the deformation at the end of the soil column was mushroom-shaped. Both the axial and lateral deformation increased with the impact velocity. While some particles located at the side of the soil column end may splash under repeated impact. The theoretical deformations of the soil column were consistent with the experimental results both in the direction of axial and lateral.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of gradation on macro-meso shear properties of the alluvial-diluvial soil-rock mixture (ADSRM)","authors":"Longqi Liu, Zhenhao Fan, Linhu Yao, Yunshu Yang","doi":"10.3389/fmats.2024.1351954","DOIUrl":"https://doi.org/10.3389/fmats.2024.1351954","url":null,"abstract":"Alluvial-diluvial soil-rock mixture (ADSRM) is a unique geological material primarily consisting of pebbles, gravel, and soil. Gradation design significantly enhances the shear strength of ADSRM, offering significant implications for sustainable construction of transportation infrastructure in mountainous regions. Hence, the N-method of gradation theory was employed for the gradation design of ADSRM fillers in this study. Macro-mechanical testing reveals that the graded sample exhibits significantly higher shear strength, equivalent cohesion, and friction angle compared to the ungraded sample, with more pronounced shear dilatancy. Meso-shear properties suggest that the graded sample has a lower percentage of pore area compared to the ungraded sample, but a higher percentage of small pores relative to total pores, and more crushed rock blocks under the same normal stress conditions. Pore abundance indicates that the majority of pores on the shear plane are oblate in shape. The findings from the equivalent diameter and fractal dimension of the rock block contour suggest improved grinding roundness of rock blocks in the graded sample post-shearing. In summary, the quantity of pores and broken rock blocks primarily impacts the strength and equivalent cohesion of the filler, while the abundance, roundness, shape coefficient, and fractal dimension of rock block contour mainly affects the internal friction angle.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}