Shareef Gul, Hameed Gul, Muhammad Shahzad, Ikram Ullah, Ali Shahzad, Shahid Ullah Khan
{"title":"Comprehensive analysis of potato (<i>Solanum tuberosum</i>) <i>PYL</i> genes highlights their role in stress responses.","authors":"Shareef Gul, Hameed Gul, Muhammad Shahzad, Ikram Ullah, Ali Shahzad, Shahid Ullah Khan","doi":"10.1071/FP24094","DOIUrl":"10.1071/FP24094","url":null,"abstract":"<p><p>Abscisic acid (ABA) regulates plant development, seed germination, and stress responses. The PYR1-like (PYL) proteins are essential for ABA signalling. However, the evolution and expression of PYL genes in potato (Solanum tuberosum ) remain poorly understood. Here, we analysed and identified 17 PYL genes in the potato genome, which were categorised into three groups based on phylogenetic analysis. These genes are distributed across nine chromosomes with predicted proteins subcellar localisation primarily in the cytoplasm. These StPYLs revealed conserved exon structures and domains among the groups. Promoter region analysis indicated hormone and stress-related elements in all StPYL s. Protein-protein interactions and microRNA networks predicted that the interactions of StPYLs are crucial components of ABA signalling, underlining their pivotal role in stress management and growth regulation in potato. Expression profiling across different tissues and under various stresses revealed their varied expression pattern. Further, we validated the expression pattern of selected StPYLs through reverse transcription quantitative PCR under drought, salt, and Phytophthora infestans stresses. This revealed consistent upregulation of StPYL6 in these stresses, while StPYL11 exhibited significant downregulation over time. Other genes showed downregulation under drought and salt stresses while upregulation under P. infestans . Overall, our results suggested the potential role of PYL genes in abiotic and biotic stresses.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of arbuscular mycorrhizal fungi in the rhizosphere of two olive (<i>Olea europaea</i>) varieties Arbequina and Barnea under water deficit conditions.","authors":"Mariana Bonetto, Noelia Cofré, Franco Calvo, Sonia Silvente","doi":"10.1071/FP24108","DOIUrl":"https://doi.org/10.1071/FP24108","url":null,"abstract":"<p><p>One strategy to improve olive (Olea europaea ) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (-AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20days); (3) long-period drought (25days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and -) and B(+ and -) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary analysis of genes from WOX family and their expression profile in grape (<i>Vitis vinifera</i>) under different stresses.","authors":"Meishuang Gong, Xu Lu, Congcong Zhang, Lei Ma, Haokai Yan, Guojie Nai, Ying Lai, Yuanyuan Li, Zhihui Pu, Baihong Chen, Shaoying Ma, Sheng Li","doi":"10.1071/FP24136","DOIUrl":"https://doi.org/10.1071/FP24136","url":null,"abstract":"<p><p>The WUSCHEL-related homeobox (WOX) transcription factor family plays critical roles in plant growth, development, and stress adaptation, but the biological functions in response to various stress of the WOX gene family have not been extensively researched in grapevine (Vitis vinifera ). In this study, 12 grapevine WOXs were identified from the grapevine genome. Quantitative PCR and microarray expression profiling found that the expression of WOXs had an obvious tissue-specific pattern. Conjoint analysis between various tissues and treated materials indicated VvWUS1 expression is associated with expression of genes from grapevine rupestris stem pitting-associated virus; and VvWOX3 with grapevine fanleaf virus. The gene expression patterns of the WOXs in grape were different under salt stress, with VvWOX8/9 , VvWUS1 , and VvWOX3 responding more strongly to salt stress than control by 18.20-, 9.50-, and 9.19-fold. This study further improves understanding of the evolution and function of the WOX gene family, and offers a theoretical framework and reference for breeding grapevine to better tolerate adversity and permit cultivation of seedlings free of viruses.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sevgi Bülbül, Asiye Sezgin Muslu, Aykut Saglam, Asim Kadioglu
{"title":"<i>Heliotropium thermophilum</i> adapts to high soil temperature in natural conditions due to its highly active antioxidant system protecting its photosynthetic machinery.","authors":"Sevgi Bülbül, Asiye Sezgin Muslu, Aykut Saglam, Asim Kadioglu","doi":"10.1071/FP23325","DOIUrl":"https://doi.org/10.1071/FP23325","url":null,"abstract":"<p><p>Heliotropium thermophilum (Boraginaceae) plants have strong antioxidant properties. This study investigated the effectiveness of the antioxidant system in protecting the photosynthetic machinery of H. thermophilum . Plants were obtained from Kızıldere geothermal area in Buharkent district, Aydın, Turkey. Plants in the geothermal area that grew at 25-35°C were regarded as the low temperature group, while those that grew at 55-65°C were regarded as the high temperature group. We analysed the physiological changes of these plants at the two temperature conditions at stage pre-flowering and flowering. We meaured the effect of high soil temperature on water potential, malondialdehyde, cell membrane stability, and hydrogen peroxide analysis to determine stress levels on leaves and roots. Changes in antioxidant enzyme activities, ascorbate and chlorophyll content, chlorophyll fluorescence, photosynthetic gas exchange parameters, and photosynthetic enzymes (Rubisco and invertase) activities were also determined. Our results showed minimal changes to stress levels, indicating that plants were tolerant to high soil temperatures. In general, an increase in antioxidant enzyme activities, ascorbat levels, and all chlorophyll fluorescence parameters except for non-photochemical quenching (NPQ) and F v /F m were observed. The pre-flowering and flowering stages were both characterised by decreased NPQ, despite F v /F m not changing. Additionally, there was a rise in the levels of photosynthetic gas exchange parameters, Rubisco, and invertase activities. High temperature did not affect photosynthetic yield because H. thermophilum was found to stimulate antioxidant capacity, which reduces oxidative damage and maintains its photosynthetic machinery in high temperature conditions and therefore, it is tolerant to high soil temperature.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Sadaqat, Kinza Fatima, Farrukh Azeem, Tayyaba Shaheen, Mahmood-Ur- Rahman, Tehreem Ali, Wafa Abdullah I Al-Megrin, Muhammad Tahir Ul Qamar
{"title":"Computational analysis and expression profiling of two-component system (TCS) gene family members in mango (<i>Mangifera indica</i>) indicated their roles in stress response.","authors":"Muhammad Sadaqat, Kinza Fatima, Farrukh Azeem, Tayyaba Shaheen, Mahmood-Ur- Rahman, Tehreem Ali, Wafa Abdullah I Al-Megrin, Muhammad Tahir Ul Qamar","doi":"10.1071/FP24055","DOIUrl":"https://doi.org/10.1071/FP24055","url":null,"abstract":"<p><p>The two-component system (TCS) gene family is among the most important signal transduction families in plants and is involved in the regulation of various abiotic stresses, cell growth and division. To understand the role of TCS genes in mango (Mangifera indica ), a comprehensive analysis of TCS gene family was carried out in mango leading to identification of 65 MiTCS genes. Phylogenetic analysis divided MiTCSs into three groups (histidine kinases, histidine-containing phosphotransfer proteins, and response regulators) and 11 subgroups. One tandem duplication and 23 pairs of segmental duplicates were found within the MiTCSs . Promoter analysis revealed that MiTCSs contain a large number of cis -elements associated with environmental stresses, hormone response, light signalling, and plant development. Gene ontology analysis showed their involvement in various biological processes and molecular functions, particularly signal transduction. Protein-protein interaction analysis showed that MiTCS proteins interacted with each other. The expression pattern in various tissues and under many stresses (drought, cold, and disease) showed that expression levels varied among various genes in different conditions. MiTCSs 3D structure predictions showed structural conservation among members of the same groups. This information can be further used to develop improved cultivars and will serve as a foundation for gaining more functional insights into the TCS gene family.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Penki Jenny, Amar A Sakure, Ankit Yadav, Sushil Kumar
{"title":"Molecular cloning and characterisation of root-specific <i>SlREO</i> promoter of the Indian tomato (<i>Solanum lycopersicum</i> L.) cultivar.","authors":"Penki Jenny, Amar A Sakure, Ankit Yadav, Sushil Kumar","doi":"10.1071/FP24063","DOIUrl":"10.1071/FP24063","url":null,"abstract":"<p><p>Genetic transformation is helpful in enhancing crops, utilising promoters that can be constitutive, inducible, or tissue-specific. However, the use of constitutive promoters may hinder plant growth due to energy consumption during cellular processes. To optimise transgene effects, tissue-specific promoters like root-specific ones prove valuable in addressing root-related issues and enhancing productivity. Yet, identified root-specific promoters in crop are limited. To address this gap, the expression pattern of the root-specific SlREO promoter was examined across various crops. Sequencing confirmed its identity and high homology (99%) with the NCBI database, distinct from other plants tested. Using the PLACE database, six motifs associated with root expression were identified, along with several other important elements. The 2.4kb SlREO promoter was linked to a ß-glucuronidase (GUS) reporter gene alongside the CaMV35S promoter in pRI 201-AN-GUS vectors to study its expression. Histochemistry revealed strong root-specific expression in tomato (Solanum lycopersicum ) root tissues and limited expression in stems. However, the SlREO promoter did not consistently maintain its root-specific expression in other plants. Conversely, the CaMV35S promoter exhibited constitutive expression across all tissues in various plants. This study underscores the potential of the SlREO promoter as a root-specific regulatory element, offering avenues for improving crops, particularly against environmental stresses.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yin Liu, Stephen Tyerman, Leigh Schmidtke, Suzy Rogiers
{"title":"Effects of extra potassium supply and rootstocks indicate links between water, solutes and energy in Shiraz grapevines (<i>Vitis vinifera</i>) pericarps.","authors":"Yin Liu, Stephen Tyerman, Leigh Schmidtke, Suzy Rogiers","doi":"10.1071/FP23141","DOIUrl":"https://doi.org/10.1071/FP23141","url":null,"abstract":"<p><p>Potassium (K) is essential for the development of grapevines (Vitis vinifera ), accumulating into berries during maturation. Elevated K has been associated with high sugar and low acidity in juice. Characterising the accumulation patterns of K and other components in pericarps treated with various experimental factors may indicate potential regulators of berry K levels. A soil fertiliser trial using nutrient solutions with two K supply rates was conducted on potted Shiraz vines during berry ripening. Doubled-K supply increased L-malic acid content in the early-ripening phase, and increased K and magnesium concentrations in the late-ripening phase. Doubled-K supply reduced the ratio of K to sodium in later ripening phases, suggesting that the accumulation of K relative to sodium was limited in more mature berries supplied with extra K. Pericarp water percentage, sugar, K and ATP were correlated in both treatments, indicating links between hydration, solute transport and energy in maturing berries. In a separate rootstock trial over the two growing seasons, Shiraz scions grafted onto 420-A rootstock produced berries with lower K concentration and content than those grafted onto Ramsey or Ruggeri-140 rootstocks and own-rooted vines. This study demonstrated that the K supply and berry ripening phase impacted the berry K level.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acclimation mechanism of microalgal photosynthetic apparatus under low atmospheric pressures - new astrobiological perspectives in a Mars-like atmosphere.","authors":"Charalampia-Stavroula Gritsi, Evangelos Sarmas, Vangelis Daskalakis, Kiriakos Kotzabasis","doi":"10.1071/FP24058","DOIUrl":"https://doi.org/10.1071/FP24058","url":null,"abstract":"<p><p>This study reveals a new acclimation mechanism of the eukaryotic unicellular green alga Chlorella vulgaris in terms of the effect of varying atmospheric pressures on the structure and function of its photosynthetic apparatus using fluorescence induction measurements (JIP-test). The results indicate that low (400mbar) and extreme low (2 atmosphere (simulating the Mars atmosphere), reveals that the impact of extremely low atmospheric pressure on PQ mobility within the photosynthetic membrane, coupled with the low density of an almost 100% CO2 Mars-like atmosphere, results to a similar photosynthetic efficiency to that on Earth. These findings pave the way for the identification of novel functional acclimation mechanisms of microalgae to extreme environments that are vastly distinct from those found on Earth.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silicon mitigates salinity effects on sorghum-sudangrass (<i>Sorghum bicolor</i> × <i>Sorghum sudanense</i>) by enhancing growth and photosynthetic efficiency.","authors":"Farah Bounaouara, Rabaa Hidri, Mohammed Falouti, Mokded Rabhi, Chedly Abdelly, Walid Zorrig, Inès Slama","doi":"10.1071/FP24029","DOIUrl":"https://doi.org/10.1071/FP24029","url":null,"abstract":"<p><p>The aim of this study was to investigate whether silicon (Si) supply was able to alleviate the harmful effects caused by salinity stress on sorghum-sudangrass (Sorghum bicolor ×Sorghum sudanense ), a species of grass raised for forage and grain. Plants were grown in the presence or absence of 150mM NaCl, supplemented or not with Si (0.5mM Si). Biomass production, water and mineral status, photosynthetic pigment contents, and gas exchange parameters were investigated. Special focus was accorded to evaluating the PSI and PSII. Salinity stress significantly reduced plant growth and tissue hydration, and led to a significant decrease in all other studied parameters. Si supply enhanced whole plant biomass production by 50%, improved water status, decreased Na+ and Cl- accumulation, and even restored chlorophyll a , chlorophyll b , and carotenoid contents. Interestingly, both photosystem activities (PSI and PSII) were enhanced with Si addition. However, a more pronounced enhancement was noted in PSI compared with PSII, with a greater oxidation state upon Si supply. Our findings confirm that Si mitigated the adverse effects of salinity on sorghum-sudangrass throughout adverse approaches. Application of Si in sorghum appears to be an efficient key solution for managing salt-damaging effects on plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maira Tanveer, Zain Ul Abidin, Hussam F. Najeeb Alawadi, Ahmad Naeem Shahzad, Athar Mahmood, Bilal Ahmad Khan, Sameer Qari, Hesham Farouk Oraby
{"title":"Recent advances in genome editing strategies for balancing growth and defence in sugarcane (Saccharum officinarum)","authors":"Maira Tanveer, Zain Ul Abidin, Hussam F. Najeeb Alawadi, Ahmad Naeem Shahzad, Athar Mahmood, Bilal Ahmad Khan, Sameer Qari, Hesham Farouk Oraby","doi":"10.1071/fp24036","DOIUrl":"https://doi.org/10.1071/fp24036","url":null,"abstract":"<p>Sugarcane (<i>Saccharum officinarum</i>) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism’s genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (<i>Oryza sativa</i>), tomato (<i>Solanum lycopersicum</i>), maize (<i>Zea mays</i>), barley (<i>Hordeum vulgare</i>) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}