{"title":"Functional and transcriptional regulation of the anthocyanidin acyl modifier gene <i>Gs5AT</i> of <i>Gentiana sino-ornata</i>.","authors":"Han Meng, Siqi Chen, Yanmei Wu, Xuehua Jin","doi":"10.1071/FP23143","DOIUrl":"https://doi.org/10.1071/FP23143","url":null,"abstract":"<p><p>The Chinese gentian, Gentiana sino-ornata produces brilliant blue flowers. To investigate the biological function and transcriptional regulation mechanism of the anthocyanin 5-O-acyltransferase gene (Gs5AT ) in the corolla, it is beneficial to analyse the mechanism of blue flower colour presentation. In this investigation, we obtained the CDS and promoter sequences of the gene Gs5AT . Yeast one-hybrid experiments were used to identify the transcription factor GsbHLH7 that activates the gene Gs5AT . According to quantitive reverse transcription polymerase chain reaction analysis, the expression of the gene Gs5AT was significantly and positively correlated with the gene GsbHLH7 . The colour phenotype of the flowers was significantly altered by the virus-induced gene silencing transduction of Gs5AT and GsbHLH7 , with GsbHLH7 silencing producing more pronounced changes in the corolla colour than Gs5AT . The expression of GsF3'5'H , GsDFR , GsANS , Gs3GT , and Gs5GT all fell to varying degrees after GsbHLH7 silencing, indicating that GsbHLH7 may regulate transcription of these genes as well as Gs5AT . The results of this study indicate that Gs5AT was positively regulated by the GsbHLH7 , and thus affects the colour presentation of the blue corolla.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel (<i>Foeniculum vulgare</i>) under different irrigation regimes.","authors":"Hossein Mosaedi, Hamid Mozafari, Behzad Sani, Abdollah Ghasemi Pirbalouti, Faezeh Rajabzadeh","doi":"10.1071/FP24149","DOIUrl":"https://doi.org/10.1071/FP24149","url":null,"abstract":"<p><p>The comparative efficacy of silicon (Si) and zinc (Zn) nanoparticles (NPs) in mitigating drought stress in fennel (Foeniculum vulgare ) remains largely unexplored. This study evaluated the impact of Si NPs and Zn NPs on enhancing plant growth and physiological-biochemical attributes of fennel under varying irrigation regimes. The 2-year study was a split-pot design with irrigation at three irrigation levels (100, 75, and 50% field capacity, FC) and five treatments of foliar application of Si and Zn NPs (control, 1mM Si NP, 2mM Si NP, 1mM Zn NP, 2mM Zn NP). Results showed that drought stress reduced plant performance. Increases in superoxide dismutase (SOD, 131%) and catalase (CAT, 276%) were seen after a 50% FC drought without the use of Si and Zn NPs. Conversely, biological yield (34%), seed yield (44%), chlorophyll a +b (26%), relative water content (RWC, 21%), and essential oil (EO) yield (50%) were all reduced. However, application of Zn and Si, particularly 1mM Si and 2mM Zn, greatly mitigated drought stress via lowering CAT and SOD activity and enhancing plant yield, chlorophyll content, RWC, and EO. The composition of the EO consisted primarily of anethole, followed by limonene, fenchone, and estragole. During drought conditions, monoterpene hydrocarbons increased while oxygenated monoterpenes decreased. The opposite trend was observed for Si and Zn NPs. Our results suggest that applying Zn NPs at 2mM followed by Si NPs at 1mM improved plant resilience and EO yield in fennel plants under water stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang
{"title":"Identification and characterisation of 'No apical meristem; <i>Arabidopsis</i> transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (<i>Vitis vinifera</i>).","authors":"Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang","doi":"10.1071/FP24207","DOIUrl":"https://doi.org/10.1071/FP24207","url":null,"abstract":"<p><p>The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raji Sadasivan Nair, Saravanan Raju, Sanket Jijabrao More, Jos Thomas Puthur, Jayanti Makasana, Velumani Ravi
{"title":"Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (<i>Manihot esculenta</i>) subjected to variable high light conditions.","authors":"Raji Sadasivan Nair, Saravanan Raju, Sanket Jijabrao More, Jos Thomas Puthur, Jayanti Makasana, Velumani Ravi","doi":"10.1071/FP24118","DOIUrl":"https://doi.org/10.1071/FP24118","url":null,"abstract":"<p><p>Light intensity is a critical environmental factor influencing plant growth and development. To survive high light conditions, plants have evolved various protective mechanisms, including non-photochemical quenching (NPQ). However, NPQ can limit effective photosynthetic yield when transitioning to low light conditions. This phenomenon is underexplored in cassava (Manihot esculenta ), a starchy storage root crop known for its high biological efficiency and climate resilience. To address this knowledge gap, we assessed the photoprotective abilities and growth responses of six cassava varieties under natural environmental light conditions (control) and intermittent high light (IHL) conditions by adding 900μmolm-2 s-1 using full-spectrum LED lights, on top of the natural ambient daylight. Our results demonstrated a significant impact of light treatment on aboveground biomass, total crop biomass, chlorophyll a and b content, photosynthetic rate, and NPQ values during transitions from low to high light and vice versa. Notably, cassava variety 'Sree Suvarna' exhibited the highest yield under both control and IHL conditions. These findings suggest that screening cassava varieties for their ability to postpone photoinhibition and recover quickly from photoinhibition may enhance photosynthetic performance. Such strategies have important implications for improving the efficiency and resilience of cassava crops, ultimately contributing to sustainable agricultural productivity.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exogenous γ-aminobutyric acid (GABA) enhances rye (<i>Secale cereale</i>) seedling resistance to combined freeze-thaw and cadmium stress.","authors":"Huixin Wang, Guozhang Bao, Lingzhi Tian, Simeng Chen, Yanan Xu, Guomei Li, Hongwei Zhao","doi":"10.1071/FP24205","DOIUrl":"https://doi.org/10.1071/FP24205","url":null,"abstract":"<p><p>Freeze-thaw is a common stress at high altitudes in northern China. There is a risk of cadmium (Cd) contamination in the region. γ-aminobutyric acid (GABA) is a natural product that regulates plant growth. Rye (Secale cereale ) was used as research material to investigate the physiological effects of exogenous GABA on rye seedlings under the single and combined stresses of freeze-thaw and cadmium. The results showed that the combined stress severely inhibited shoot length, root length, fresh weight, and dry weight, increased malondialdehyde and hydrogen peroxide contents, and significantly decreased superoxide dismutase (SOD) activity. Foliar application of 5mM GABA alleviated the negative effects of stress on seedling growth, increased soluble protein content, and reduced malondialdehyde and hydrogen peroxide contents. Exogenous GABA application also enhanced the activities of SOD and peroxidase (POD). Additionally, the presence of exogenous GABA activated the GABA metabolic process and encouraged the accumulation of phytochelatins, glutathione, and non-protein thiol. These results indicate that exogenous GABA can effectively improve the resistance of rye seedlings to freeze-thaw and Cd by regulating the antioxidant enzyme system and enhancing its own detoxification mechanism, and they provide a basis for future applications of exogenous GABA, which is beneficial for ecological protection.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential modulation of photosystem II photochemical efficiency in six C<sub>4</sub> xero-halophytes.","authors":"Ahmad Zia, Salman Gulzar, Gerald E Edwards","doi":"10.1071/FP24060","DOIUrl":"https://doi.org/10.1071/FP24060","url":null,"abstract":"<p><p>Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy
{"title":"Linking structure to function: the connection between mesophyll structure and intrinsic water use efficiency.","authors":"Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy","doi":"10.1071/FP24150","DOIUrl":"10.1071/FP24150","url":null,"abstract":"<p><p>Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant's anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focused on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi , our understanding of how a plant's physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramiro N Furio, Ana C Fernández, Patricia L Albornoz, Melisa Evangelina Yonny, María Luisa Toscano Adamo, Ana I Ruiz, Mónica Azucena Nazareno, Yamilet Coll, Juan C Díaz-Ricci, Sergio M Salazar
{"title":"Mitigation strategy of saline stress in <i>Fragaria vesca</i> using natural and synthetic brassinosteroids as biostimulants.","authors":"Ramiro N Furio, Ana C Fernández, Patricia L Albornoz, Melisa Evangelina Yonny, María Luisa Toscano Adamo, Ana I Ruiz, Mónica Azucena Nazareno, Yamilet Coll, Juan C Díaz-Ricci, Sergio M Salazar","doi":"10.1071/FP23327","DOIUrl":"https://doi.org/10.1071/FP23327","url":null,"abstract":"<p><p>Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aldineia Buss, Wesley Costa Silva, Vladimir Eliodoro Costa, Ana Silvia Franco Pinheiro Moreira
{"title":"How the vertical gradient of light in the understorey and water seasonality affect leaf traits of <i>Vanilla phaeantha</i> (Orchidaceae), a crassulacean acid metabolism (CAM) hemiephyte.","authors":"Aldineia Buss, Wesley Costa Silva, Vladimir Eliodoro Costa, Ana Silvia Franco Pinheiro Moreira","doi":"10.1071/FP24132","DOIUrl":"https://doi.org/10.1071/FP24132","url":null,"abstract":"<p><p>Structural and physiological leaf traits and their plasticity were compared in the hemiepiphyte Vanilla phaeantha . This species grows along a phorophyte reaching different understorey positions and exhibiting diverse responses to environment changes. We analysed three height strata above the ground, establishing a light gradient, and considering seasonal water fluctuations. The upper leaves had higher area and mass and were less pigmented. The dry season induced a reduction of approximately 2h of stomatal opening over the diel 24h crassulacean acid metabolism (CAM) cycle in the leaves at all understorey positions. The leaves more exposed to sunlight were larger with higher titratable acidity during the rainy season, while the leaves near the ground maintained the same rates of stomatal conductance and nocturnal acidification between seasons, with lowest values of carbon isotopes in the rainy season. Our research showed that some structural leaf traits (such as specific leaf mass, biomass, and saturated water content) are sensitive to variation in understorey position. In contrast, other physiological traits (stomatal conductance, transpiration, and fluorescence parameters) are more sensitive to seasonal variations. The results are a novelty in assessing the variation of CAM along the same plant in a height gradient and under field conditions.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum)","authors":"Aiana, Hanny Chauhan, Kashmir Singh","doi":"10.1071/fp24114","DOIUrl":"https://doi.org/10.1071/fp24114","url":null,"abstract":"<p>Glycoside hydrolases (GHs) are important in metabolic processes involving diverse carbohydrate-based substances found inside plant tissues. Potatoes (<i>Solanum tuberosum</i>) are rich in starchy carbohydrates, suggesting the role of GHs in their metabolic pathways. In this study, we examine the GH superfamily in potato where 366 potential GHs were identified using a similarity search method. Genes were subjected to further characterisation to gain insights into their structural composition, functional properties and distribution patterns across tissue types. Several <i>in silico</i> methodologies were also employed to investigate the physicochemical features, conserved motifs, chromosomal mapping, duplication events, syntenic links with tomato (<i>Solanum lycopersicum</i>), subcellular localisations, secondary structures and phylogenetic relationships. <i>Cis</i>-elements in <i>StGHs</i> revealed that the promoters of <i>StGHs</i> contain <i>cis</i>-elements that are responsive to phytohormones that are involved in plant growth and development, and are associated with stress responses. RNA-seq data identified significant changes in expression levels of <i>GH16, GH17</i>, <i>GH18</i>, <i>GH19</i> and <i>GH28</i> members under stress conditions. Expression patterns of several GHs were confirmed using real time quantitative PCR in response to stress. <i>StGH16.24</i> expression increased after 3 days of drought stress, whereas <i>StGH16.30</i> continuously increased under salt stress. Potential interactions between potato miRNAs and <i>StGH</i> revealed 393 and 627 interactions under drought and salt stress, respectively. Our findings offer insights into specific functions of GHs in diverse developmental stages and stress-related challenges in potato and other plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"64 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}