Angelia Tanu, Allan Rattey, Andrew Fletcher, Sarah Rich, Alexandra Taylor, Erik Veneklaas
{"title":"提高深播成功:燕麦(Avena sativa)中胚轴和胚芽鞘长度的遗传多样性和田间建立。","authors":"Angelia Tanu, Allan Rattey, Andrew Fletcher, Sarah Rich, Alexandra Taylor, Erik Veneklaas","doi":"10.1071/FP24321","DOIUrl":null,"url":null,"abstract":"<p><p>Early and deep sowing practices have revolutionised Australian winter cropping. Oats (Avena sativa ) are the only winter-cereal with a mesocotyl, potentially allowing them to successfully emerge from deep sowing. This study examined the genetic differences in mesocotyl and coleoptile length, the effect of temperature on these traits, and undertook a field validation of deep-sown oats compared to selected wheat (Triticum aestivum ) and barley (Hordeum vulgare ) genotypes. A controlled environment experiment on 195 oat genotypes revealed long combined mesocotyl and coleoptile lengths (112-219 mm) with significant genotypic variation. A further controlled environment study compared the mesocotyl and coleoptile lengths of 42 genotypes across four temperatures (15-30°C). This revealed that temperatures exceeding 20°C reduced coleoptile and mesocotyl length by 3.7mm and 1.1mm per °C. Five field experiments compared the emergence of 19 oat, four wheat, and two barley genotypes from deep (110mm) and shallow sowing (40mm). Oats had greater emergence at depth compared to wheat and barley genotypes. The results indicate that oats are highly suited to early and deep sowing conditions due to their long mesocotyl and combined mesocotyl and coleoptile length.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing deep sowing success: genetic diversity in mesocotyl and coleoptile length, and field establishment of oats (<i>Avena sativa</i>).\",\"authors\":\"Angelia Tanu, Allan Rattey, Andrew Fletcher, Sarah Rich, Alexandra Taylor, Erik Veneklaas\",\"doi\":\"10.1071/FP24321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early and deep sowing practices have revolutionised Australian winter cropping. Oats (Avena sativa ) are the only winter-cereal with a mesocotyl, potentially allowing them to successfully emerge from deep sowing. This study examined the genetic differences in mesocotyl and coleoptile length, the effect of temperature on these traits, and undertook a field validation of deep-sown oats compared to selected wheat (Triticum aestivum ) and barley (Hordeum vulgare ) genotypes. A controlled environment experiment on 195 oat genotypes revealed long combined mesocotyl and coleoptile lengths (112-219 mm) with significant genotypic variation. A further controlled environment study compared the mesocotyl and coleoptile lengths of 42 genotypes across four temperatures (15-30°C). This revealed that temperatures exceeding 20°C reduced coleoptile and mesocotyl length by 3.7mm and 1.1mm per °C. Five field experiments compared the emergence of 19 oat, four wheat, and two barley genotypes from deep (110mm) and shallow sowing (40mm). Oats had greater emergence at depth compared to wheat and barley genotypes. The results indicate that oats are highly suited to early and deep sowing conditions due to their long mesocotyl and combined mesocotyl and coleoptile length.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24321\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24321","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Enhancing deep sowing success: genetic diversity in mesocotyl and coleoptile length, and field establishment of oats (Avena sativa).
Early and deep sowing practices have revolutionised Australian winter cropping. Oats (Avena sativa ) are the only winter-cereal with a mesocotyl, potentially allowing them to successfully emerge from deep sowing. This study examined the genetic differences in mesocotyl and coleoptile length, the effect of temperature on these traits, and undertook a field validation of deep-sown oats compared to selected wheat (Triticum aestivum ) and barley (Hordeum vulgare ) genotypes. A controlled environment experiment on 195 oat genotypes revealed long combined mesocotyl and coleoptile lengths (112-219 mm) with significant genotypic variation. A further controlled environment study compared the mesocotyl and coleoptile lengths of 42 genotypes across four temperatures (15-30°C). This revealed that temperatures exceeding 20°C reduced coleoptile and mesocotyl length by 3.7mm and 1.1mm per °C. Five field experiments compared the emergence of 19 oat, four wheat, and two barley genotypes from deep (110mm) and shallow sowing (40mm). Oats had greater emergence at depth compared to wheat and barley genotypes. The results indicate that oats are highly suited to early and deep sowing conditions due to their long mesocotyl and combined mesocotyl and coleoptile length.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.