Inhibitors of lysine biosynthesis enzymes as potential new herbicides.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Emily R R Mackie, Mirrin V McKay, Andrew S Barrow, Tatiana P Soares da Costa
{"title":"Inhibitors of lysine biosynthesis enzymes as potential new herbicides.","authors":"Emily R R Mackie, Mirrin V McKay, Andrew S Barrow, Tatiana P Soares da Costa","doi":"10.1071/FP25030","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine is an amino acid that is essential for the growth and development of all organisms owing to its role in a plethora of critical biological functions and reactions. In plants, lysine is synthesised via five sequential enzyme-catalysed reactions collectively known as the diaminopimelate (DAP) pathway, whereas animals are reliant on their plant dietary intake to obtain lysine. Given that lysine is one of the most nutritionally limiting amino acids, several studies have focused on developing strategies to modulate the activity of DAP pathway enzymes to improve the nutritional value of crops. More recently, research has emerged on the potential of inhibiting DAP pathway enzymes for the development of herbicides with a novel mode of action. Over reliance on a small number of modes of action has led to a herbicide resistance crisis, necessitating the development of new modes of action to which no resistance exists. As such, the first herbicidal inhibitors of the DAP pathway have been developed, which target the first three enzymes in lysine biosynthesis. This review explores the structure, function, and inhibition of these enzymes, as well as highlighting promising avenues for the future development of new plant lysine biosynthesis inhibitors.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP25030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lysine is an amino acid that is essential for the growth and development of all organisms owing to its role in a plethora of critical biological functions and reactions. In plants, lysine is synthesised via five sequential enzyme-catalysed reactions collectively known as the diaminopimelate (DAP) pathway, whereas animals are reliant on their plant dietary intake to obtain lysine. Given that lysine is one of the most nutritionally limiting amino acids, several studies have focused on developing strategies to modulate the activity of DAP pathway enzymes to improve the nutritional value of crops. More recently, research has emerged on the potential of inhibiting DAP pathway enzymes for the development of herbicides with a novel mode of action. Over reliance on a small number of modes of action has led to a herbicide resistance crisis, necessitating the development of new modes of action to which no resistance exists. As such, the first herbicidal inhibitors of the DAP pathway have been developed, which target the first three enzymes in lysine biosynthesis. This review explores the structure, function, and inhibition of these enzymes, as well as highlighting promising avenues for the future development of new plant lysine biosynthesis inhibitors.

赖氨酸生物合成酶抑制剂作为潜在的新型除草剂。
赖氨酸是一种氨基酸,对所有生物的生长和发育都是必不可少的,因为它在许多关键的生物功能和反应中起着重要作用。在植物中,赖氨酸是通过5个连续的酶催化反应合成的,这些反应统称为二氨基苯甲酸(DAP)途径,而动物则依赖于从植物中摄取赖氨酸。鉴于赖氨酸是最具营养限制的氨基酸之一,一些研究集中在制定策略来调节DAP途径酶的活性,以提高作物的营养价值。最近,研究出现了抑制DAP途径酶的潜力,以开发具有新作用模式的除草剂。过度依赖少数几种作用方式导致了除草剂抗药性危机,这就要求开发不存在抗药性的新作用方式。因此,DAP途径的第一个除草剂抑制剂已经开发出来,它针对赖氨酸生物合成的前三个酶。本文综述了这些酶的结构、功能和抑制作用,并对未来开发新的植物赖氨酸生物合成抑制剂的前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信