Nedaa A Abd Al Rahim, Ammar A Razzak Mahmood, Lubna H Tahtamouni, Mai F AlSakhen, Salem R Yasin, Abdulrahman M Saleh
{"title":"New 4-amino-3-chloro benzoate ester derivatives as EGFR inhibitors: synthesis, in silico and biological analyses.","authors":"Nedaa A Abd Al Rahim, Ammar A Razzak Mahmood, Lubna H Tahtamouni, Mai F AlSakhen, Salem R Yasin, Abdulrahman M Saleh","doi":"10.1080/17568919.2024.2431478","DOIUrl":"10.1080/17568919.2024.2431478","url":null,"abstract":"<p><strong>Aim: </strong>The main goal of this study was to synthesize new derivatives of 4-amino-3-chloro benzoate ester, including 1,3,4-oxadiazole derivatives (<b>N3a-d</b>), benzohydrazone derivatives (<b>N4a-c</b>), and hydrazine-1-carbothioamide derivatives (<b>N5a-d</b>) that target epidermal growth factor receptor (EGFR) tyrosine kinase.</p><p><strong>Materials & methods: </strong>The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR, and the anti-proliferative properties were tested in vitro.</p><p><strong>Results: </strong>In silico analysis showed that the hydrazine-1-carbothioamide derivatives (<b>N5a-d</b>) had the best matching pattern with EGFR pharmacophoric queries compared to erlotinib, exhibited a favorable safety profile, and showed the best stability among the tested compounds. Compound <b>N5a</b> induced cytotoxicity in the three cancer cell lines tested (A549, HepG2, and HCT-116), by targeting EGFR and activating caspase 3 and caspase 8, therefore, inducing the extrinsic apoptotic pathway.</p><p><strong>Conclusion: </strong>The results of this study show that compound <b>N5a</b> is a promising cytotoxic compound that inhibits the tyrosine kinase activity of EGFR.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2647-2662"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faiza Seraj, Fouzia Naz, Musa Özil, Nimet Baltaş, Syeda Sumayya Tariq, Zaheer Ul-Haq, Uzma Salar, Muhammad Taha, Khalid Mohammed Khan
{"title":"Synthesis of arylated tetrahydrobenzo[<i>H</i>]quinoline-3-carbonitrile derivatives as potential hits for treatment of diabetes.","authors":"Faiza Seraj, Fouzia Naz, Musa Özil, Nimet Baltaş, Syeda Sumayya Tariq, Zaheer Ul-Haq, Uzma Salar, Muhammad Taha, Khalid Mohammed Khan","doi":"10.1080/17568919.2024.2419359","DOIUrl":"10.1080/17568919.2024.2419359","url":null,"abstract":"<p><p><b>Aim:</b> Quinoline scaffolds are serving as the core structure for numerous antifungal, analgesic, antipyretic, anti-inflammatory drugs as well as have also been investigated for their potential antidiabetic properties. Though further exploration is required in this area as the current antidiabetic agents, such as acarbose, miglitol and voglibose, are associated with several adverse side effects. In this context, arylated tetrahydrobenzo[<i>H</i>]quinoline-3-carbonitrile derivatives were designed and evaluated as potential antidiabetic agents.<b>Materials & methods:</b> A one-pot multicomponent reaction of 6-methoxy-1-tetralone with ethyl cyanoacetate, ammonium acetate and varying aldehydes yielded a range of new arylated tetrahydrobenzo[<i>h</i>]quinoline-3-carbonitrile molecules <b>1-36</b>.<b>Results:</b> Compounds <b>2-5</b>, <b>12</b>, <b>13</b>, <b>19</b> and <b>32-34</b> showed excellent inhibition against α-amylase (IC<sub>50</sub> = 3.42-15.14 μM) and α-glucosidase (IC<sub>50</sub> = 0.65-9.23 μM) enzymes in comparison to the standard acarbose (IC<sub>50</sub> = 14.35 μM). In addition, all compounds revealed significant to moderate DPPH radical scavenging activity (SC<sub>50</sub> = 21.30-138.30 μM) compared with BHT (SC<sub>50</sub> = 64.40 μM). Kinetic studies confirmed competitive inhibition mode, while molecular docking studies comprehend ligands' interaction with enzyme's active sites and absorption, distribution, metabolism, and excretion analysis confirms that all synthetic derivatives are nontoxic.<b>Conclusion:</b> This research offers a range of lead candidates to become antidiabetic agents after further advanced study.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2609-2625"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai-Jiang Liu, Chenxi Cai, Hong-Ping Zhu, Xiang Li, Bo Han
{"title":"Autophagy degradation: a promising dimension in drug discovery for neurodegenerative diseases.","authors":"Shuai-Jiang Liu, Chenxi Cai, Hong-Ping Zhu, Xiang Li, Bo Han","doi":"10.1080/17568919.2024.2431477","DOIUrl":"10.1080/17568919.2024.2431477","url":null,"abstract":"","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2563-2565"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142727637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ritu Mamgain, Garima Mishra, Saumya Kriti, Fateh V Singh
{"title":"Organoselenium compounds beyond antioxidants.","authors":"Ritu Mamgain, Garima Mishra, Saumya Kriti, Fateh V Singh","doi":"10.1080/17568919.2024.2435254","DOIUrl":"10.1080/17568919.2024.2435254","url":null,"abstract":"<p><p>Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2663-2685"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi
{"title":"New pyrano-pyridine conjugates as potential anticancer agents: design, synthesis and computational studies.","authors":"Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi","doi":"10.1080/17568919.2024.2431475","DOIUrl":"10.1080/17568919.2024.2431475","url":null,"abstract":"<p><strong>Aim: </strong>New pyrano[3,2-c]pyridine 4a-h, 5-8 and pyrano[2,3-d]pyrimidin 9a,b series were designed and chemically synthesized.</p><p><strong>Methodology: </strong>Using the standard drug doxorubicin, the novel chemical entities have been assessed in vitro as potential anticancer prospects on cell lines from liver, breast, colon, and lung cancer along with examining their inhibitory behaviors upon both EGFR and VEGFR-2 kinases.</p><p><strong>Results & conclusion: </strong>Compared to erlotinib (IC<sub>50</sub> = 0.18 µM), compounds 8a and 8b demonstrated the highest anticancer activity with IC<sub>50</sub> Values 0.23 and 0.15 µM, respectively). Further, derivative 8a illustrated encouraging inhibitory characteristics against EGFR and VEGFR-2 (IC<sub>50</sub> = 1.21 and 2.65 μM, respectively). A computational study was used to estimate the physicochemical and pharmacokinetic properties to afford insightful information about the newly synthesized agents.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2567-2582"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yousaf Khan, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Aneela Maalik, Tayyiaba Iqbal, Tariq Aziz, Muhammad Irfan Afridi, Metab Alharbi, Abdullah F Alasmari
{"title":"<i>In-vitro</i> and <i>in-silico</i> assessment of thiazole-thiazolidinone derivatives as selective inhibitors of urease and α-glucosidase.","authors":"Yousaf Khan, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Aneela Maalik, Tayyiaba Iqbal, Tariq Aziz, Muhammad Irfan Afridi, Metab Alharbi, Abdullah F Alasmari","doi":"10.1080/17568919.2024.2432303","DOIUrl":"10.1080/17568919.2024.2432303","url":null,"abstract":"<p><strong>Aims: </strong>Current research work aims to synthesize hybrid compounds with a thiazole-thiazolidinone structure, as potent inhibitors of urease and α-glucosidase enzymes.</p><p><strong>Materials and methods: </strong>These compounds were characterize through<sup>1</sup>HNMR,<sup>13</sup>CNMR and HREI-MS techniques. These compounds were also evaluated for their potential to inhibit urease and α-glucosidase enzymes for the treatment of urinary tract infections (UTIs) and diabetes treatments. Moreover, molecular docking and ADMET analysis was carried out to confirm biological outcomes.</p><p><strong>Results and conclusion: </strong>Compounds-4 (IC<sub>50</sub> = 1.80 ± 0.80 and 3.61 ± 0.59 μM against urease and α-glucosidase, respectively) exhibited significant effectiveness in inhibiting the activity of both enzymes in comparison to the conventional inhibitors thiourea and acarbose. Molecular docking experiments showed that potent compounds exhibited favorable binding orientations in the active sites of urease and α-glucosidase playing a pivotal role in inhibition profile of these compounds. These compounds were also investigated for their drug likeness and were found with desirable attributes for pharmaceutical development. Based on the findings of this research, these compounds have the potential to be developed into effective anti-diabetic and anti-urease treatments in the future.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2627-2636"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina
{"title":"Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis.","authors":"Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina","doi":"10.1080/17568919.2024.2419350","DOIUrl":"10.1080/17568919.2024.2419350","url":null,"abstract":"<p><p><b>Aim:</b> To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.<b>Materials & methods:</b> Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.<b>Results & conclusion:</b> Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2599-2607"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reda G Yousef, Ibrahim H Eissa, Hazem Elkady, Ahmed B M Mehany, Mariam Ali Abo-Saif, Mohamed M Radwan, Mahmoud A ElSohly, Ibrahim M Ibrahim, Alaa Elwan, Mohamed Ayman El-Zahabi
{"title":"Design and synthesis of new nicotinamides as immunomodulatory VEGFR-2 inhibitors and apoptosis inducers.","authors":"Reda G Yousef, Ibrahim H Eissa, Hazem Elkady, Ahmed B M Mehany, Mariam Ali Abo-Saif, Mohamed M Radwan, Mahmoud A ElSohly, Ibrahim M Ibrahim, Alaa Elwan, Mohamed Ayman El-Zahabi","doi":"10.1080/17568919.2024.2421150","DOIUrl":"10.1080/17568919.2024.2421150","url":null,"abstract":"<p><p><b>Background:</b> Nicotinamide-based VEGFR-2 inhibitors have good contribution in drug discovery.<b>Aim:</b> Development of novel nicotinamides as VEGFR-2 inhibitors.<b>Methods:</b> different <i>in vitro</i> and <i>in silico</i> assays were conducted to evaluate the VEGFR-2 inhibition and cytotoxicity.<b>Results:</b> Compound <b>16c</b> displayed strongest anti-VEGFR-2 potentiality and good anti-proliferative effects. Compound <b>16c</b> enhanced apoptosis and caused cell cycle arrest in the Pre-G1 and S phases. Compound <b>16c</b> boosted the level of the apoptotic caspase-3 and inhibited the level of TNF-α and IL-6 in tumor cells. Molecular docking and molecular dynamics (MD) simulations indicated the outstanding binding potential of compound <b>16c</b> against VEGFR-2.<b>Conclusion:</b> Compound <b>16c</b> is a good candidate for the creation of a novel antiangiogenic lead anticancer medication.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2583-2598"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of newly synthesized transition metal(II) complexes for infectious diseases.","authors":"Binesh Kumar,Jai Devi,Amit Dubey,Manish Kumar","doi":"10.1080/17568919.2024.2389766","DOIUrl":"https://doi.org/10.1080/17568919.2024.2389766","url":null,"abstract":"Aim: In the annals of human history, infectious diseases significantly influencing the collective well-being of people worldwide. Consequently, to identify effective agents for infectious ailments, the octahedral Co(II), Ni(II), Cu(II), Zn(II) complexes of 4-(3-methoxyphenyl)pyrimidin-2-amine and 2-methoxy-1-napthaldehyde based ligand were synthesized and well characterized in the current investigation.Results & methodology: The synthesized compounds were evaluated for anti-TB, anti-inflammatory, antibacterial, antifungal activities by microplate Alamar blue, bovine serum albumin, serial dilution assays. The [Zn(L1)2(H2O)2] complex (5) demonstrates robust potency with 0.0040 ± 0.0007 and 0.0038 μmol/ml MIC value in anti-tuberculosis and antimicrobial activities, correspondingly while 06.57 ± 0.03 μM IC50 value in anti-inflammatory investigation.Conclusion: Complex (5) show promising potential as targets for pathogen deformities, supported by rigorous biological and computational investigations including pharmacophore modelling, molecular docking (binding score -121.018 and -59.8662 kcal/mol for 6H53 and 1CX2 proteins, respectively), DFT (Density functional theory), MESP (Molecular Electrostatic Potential) and ADMET (absorption, distribution, metabolism, excretion and toxicity).","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"215 1","pages":"1-19"},"PeriodicalIF":4.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdoullah Bimoussa,Mouhi Eddine Hachim,Khalil El Khatabi,Yassine Laamari,Ali Oubella,Mohamed F AlAjmi,Aziz Auhmani,Mohammed Aziz Ajana,Hamid Morjani,My Youssef Ait Itto
{"title":"Semicarbazone, thiosemicarbazone tailed isoxazoline-pyrazole: synthesis, DFT, biological and computational assessment.","authors":"Abdoullah Bimoussa,Mouhi Eddine Hachim,Khalil El Khatabi,Yassine Laamari,Ali Oubella,Mohamed F AlAjmi,Aziz Auhmani,Mohammed Aziz Ajana,Hamid Morjani,My Youssef Ait Itto","doi":"10.1080/17568919.2024.2394011","DOIUrl":"https://doi.org/10.1080/17568919.2024.2394011","url":null,"abstract":"Aim: A series of semicarbazone and thiosemicarbazone-tailed hybrids comprising pyrazole and acetylisoxazoline were prepared from (R)-carvone and characterized by technique spectroscopies Nuclear Magnetic Resonance (NMR), IR and High-Resolution Mass Spectrometry. Density Functional Theory (DFT) determined the structural parameters. Their cytotoxic activity was evaluated in vitro against four human cancer cell lines.Methods & results: All the studied semi and thiosemicarbazone demonstrate a promising potential as anticancer agents. The mechanism of action of these compounds involves apoptosis in HT-1080 cells, supported by an increase in the level of caspase-3/7 activity, which also arrests the cell cycle in the G0/G1 phase. Molecular docking studies were performed to establish the potential of the most active compounds 4a and 5a. ADMET analysis showed appropriate pharmacokinetic properties, allowing structure prediction for anticancer activity.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"9 1","pages":"1-14"},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}