Moustafa Salaheldin Abdelhamid, Salwa Samy Abdelfattah Eraky, Ibrahim Mohey El-Deen, Mohamed Ahmed Elian Sophy
{"title":"Biochemical evaluation of novel thiazolone derivatives as dual α-glucosidase/α-amylase inhibitors, anti-inflammatory agents.","authors":"Moustafa Salaheldin Abdelhamid, Salwa Samy Abdelfattah Eraky, Ibrahim Mohey El-Deen, Mohamed Ahmed Elian Sophy","doi":"10.1080/17568919.2024.2447225","DOIUrl":"10.1080/17568919.2024.2447225","url":null,"abstract":"<p><strong>Background: </strong>Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.</p><p><strong>Results: </strong>All the new derivatives were assessed in vitro compared to control (Acarbose) alpha-glucosidase, and alpha-amylase inhibition influence was showed shown through (3, 5, and 7) that were the most effective compounds as α-glucosidase inhibitors.</p><p><strong>Conclusions: </strong>Compounds (4 and 7) achieved the best effect as α-amylase inhibitors showed by IC<sub>50</sub> score near to that of control (Acarbose). Meanwhile, compound (4) exhibited a lower ferric-reducing anti-oxidant power (FRAP) value when compared to the control experiment (ascorbic acid). A molecular docking study approved the binding affinity and mode of binding of compounds (4 and 5) to the α-glucosidase and α-amylase binding pockets.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"17 2","pages":"209-219"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of new coumarin derivatives and assessment of their antimicrobial efficacy.","authors":"Basma Saad Baaiu, Nashwa M Saleh, Abdulrahman Faraj Alshref Aldirsi, Anhar Abdel-Aziem","doi":"10.1080/17568919.2024.2437974","DOIUrl":"10.1080/17568919.2024.2437974","url":null,"abstract":"<p><strong>Aim: </strong>Developing new antimicrobial agents in response to the urgent challenge of antimicrobial resistance.</p><p><strong>Methods: </strong>Synthesis of the targeted coumarins, elucidation of their structures using spectroscopic tools, and investigation of their antimicrobial activity.</p><p><strong>Results: </strong>Coumarin-pyrazole <b>11</b> with CF<sub>3</sub> in the 3-position of the pyrazole ring displayed the lowest minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) with values of 1.95 and 15.6 µg/ml, respectively, against <i>Bacillus pumilis</i>. In addition, it exhibited the best inhibitory activity against <i>Saccharomyces cerevisiae</i> (MIC = 3.91 µg/ml) compared to the rest of the derivatives (7.81-62.5 µg/ml). Surprisingly, coumarin <b>14</b> with the S-CH<sub>3</sub> group had higher ability to inhibit the <i>Staphylococcus faecalis</i> strain with an MIC value of <b>1.95 µg/ml</b>, which is twice that of penicillin G (<b>MIC = 3.91 µg/ml</b>). At the same time, compounds <b>6</b>, <b>8</b>, <b>11</b>, <b>16</b>, and penicillin G showed similar activity with an MIC value of <b>3.91 µg/ml</b> against <i>Staphylococcus faecalis</i>. Also, the lowest MIC value (3.91 µg/ml) was obtained for S-CH<sub>3</sub> derivative <b>14</b> against <i>Enterobacter cloacae</i>. Coumarins <b>14</b> and 1,3,4-thiadiazine derivative <b>6</b> recorded the lowest MBC (15.6 µg/ml) against <i>Escherichia coli</i>.</p><p><strong>Conclusion: </strong>Finally, it can be concluded that some designed coumarins have a high potential to act as potent antimicrobial agents. Some of them displayed higher efficacy than or equal to the reference drug.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"9-18"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wafa A Bawazir, Nesreen S Ahmed, Somaia S Abd El-Karim, Ahmed F El-Sayed, Manal M Anwar
{"title":"New thiazolidin-4-ones as anti-cervical cancer agents targeting EGFR: design, synthesis, and computational studies.","authors":"Wafa A Bawazir, Nesreen S Ahmed, Somaia S Abd El-Karim, Ahmed F El-Sayed, Manal M Anwar","doi":"10.1080/17568919.2024.2437976","DOIUrl":"10.1080/17568919.2024.2437976","url":null,"abstract":"<p><strong>Aim: </strong>A new series of 3,4-dihydronaphthalen-1(2 h)-ylidene)hydrazineylidene)-5-substituted thiazolidin-4-one derivatives were designed and synthesized.</p><p><strong>Results & methodology: </strong>The new compounds were screened for in vitro antitumor activity against Hela cancer cell line. The compounds 7b, 7 h, and 7i produced more potent cytotoxicity than doxorubicin with IC<sub>50</sub> values of 1.83 ± 0.1, 2.54 ± 0.14, 2.75 ± 0.15, and 3.63 ± 0.2 μM, respectively. They also showed a promising safety profile against WI-38 normal cells. In addition, compound 7b produced a promising multi-kinase inhibition against EGFR (WT) while being very selective toward the mutant forms (L858R and T790M) with IC<sub>50</sub> values of 0.099 ± 0.006, 0.064 ± 0.006, and 0.026 ± 0.007 μM, respectively, in comparison to gefitinib and osimertinib. A study of the cell cycle in Hela cells showed that 7b arrests cell cycle in the pre-G1 phase and causes early and late apoptosis. Eventually, the molecular docking results showed that 7b had good-binding interactions with EGFR<sup>WT</sup>, EGFR<sup>L858R</sup>, and EGFR<sup>T790M</sup>.</p><p><strong>Conclusion: </strong>Compound 7b was predicted to have promising oral absorption, good drug-likeness, and low toxicity risks in humans. Moreover, MD simulations confirmed the stable complexes of 7b with EGFR<sup>WT</sup>, EGFRL858R, and EGFR<sup>T790M</sup> (with RMSD 0.12-0.35 nm, RMSF 0.2-0.55 nm, SASA 140-150, and Rg 1.80-2.00 nm).</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"75-91"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142800166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajdeep Ray, Stutee Das, Sumit Raosaheb Birangal, Helena I Boshoff, Jose Santinni Roma, Manisha Lobo, Raghu Chandrashekhar Hariharapura, G Gautham Shenoy
{"title":"Developing novel indoles as antitubercular agents and simulated annealing-based analysis of their binding with MmpL3.","authors":"Rajdeep Ray, Stutee Das, Sumit Raosaheb Birangal, Helena I Boshoff, Jose Santinni Roma, Manisha Lobo, Raghu Chandrashekhar Hariharapura, G Gautham Shenoy","doi":"10.1080/17568919.2024.2444872","DOIUrl":"10.1080/17568919.2024.2444872","url":null,"abstract":"<p><strong>Aim: </strong>This research aimed to develop novel indole-2-carboxamides as potential antitubercular agents using rational drug design. It also focused on identifying the critical interactions required for these compounds to exhibit effective antitubercular activity.</p><p><strong>Materials and methods: </strong>Novel indole-2-carboxamides targeting MmpL3 were designed based on SAR, synthesized, and tested for their antitubercular and <i>iniBAC</i> induction properties. Classical docking and simulated annealing were utilized to understand protein-ligand binding affinity.</p><p><strong>Results: </strong>Compounds 5c, 5f, and 5i, were active against H37Rv and different MDR and XDR strains of <i>M. tuberculosis. iniBAC</i> promoter induction study indicated that those were inhibitors of MmpL3. Through the docking and simulated annealing studies, we identified key protein-ligand interactions at the MmpL3 binding site.</p><p><strong>Conclusion: </strong>We have identified three potent antitubercular molecules that supposedly act via inhibiting MmpL3. Results from the molecular modeling studies can be used in future drug designing.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"19-34"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javed Ahmed, Mohsin Abbas Khan, Saharish Khaliq, Anum Masood, Breena, Mashooq A Bhat, Muhammad Rizwan Khan, Asim Raza, Mohamed A Al-Omar, Farhat Ullah
{"title":"Synthesis, characterization, and enzyme inhibition evaluation of sitagliptin derivatives and their metal complexes.","authors":"Javed Ahmed, Mohsin Abbas Khan, Saharish Khaliq, Anum Masood, Breena, Mashooq A Bhat, Muhammad Rizwan Khan, Asim Raza, Mohamed A Al-Omar, Farhat Ullah","doi":"10.1080/17568919.2024.2447223","DOIUrl":"10.1080/17568919.2024.2447223","url":null,"abstract":"<p><strong>Aims: </strong>This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.</p><p><strong>Material & method: </strong>The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy. The biological efficacy of these compounds was assessed through α-amylase and α-glucosidase enzyme inhibition assays, with molecular simulation studies providing additional confirmation of their inhibitory activity.</p><p><strong>Results: </strong>Among the tested derivatives, SD7, SD4, SD3, SD5, and SD9 demonstrated enzyme inhibition profiles comparable to the standard inhibitors. However, the metal complexes exhibited absorption challenges, which may influence their bioavailability.</p><p><strong>Conclusion: </strong>These findings highlight the significant anti-diabetic potential of the synthesized compounds against targeted enzymes, establishing a foundation for their development as lead molecules in future therapeutic research.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"195-207"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natasha Jeffery, Phooi Yan Mock, Kun Yang, Chau Ling Tham, Daud Ahmad Israf, Hongyuan Li, Xiaohui Wang, Kok Wai Lam
{"title":"Therapeutic targeting of neuroinflammation in methamphetamine use disorder.","authors":"Natasha Jeffery, Phooi Yan Mock, Kun Yang, Chau Ling Tham, Daud Ahmad Israf, Hongyuan Li, Xiaohui Wang, Kok Wai Lam","doi":"10.1080/17568919.2024.2447226","DOIUrl":"10.1080/17568919.2024.2447226","url":null,"abstract":"<p><p>Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets. Given the multifactorial neurological effects of METH, including cognitive impairment and neurodegeneration, addressing METH-induced neuroinflammation has shown considerable promise in partially mitigating the damaging effects on the central nervous system and improving behavioral outcomes. This article provides an overview of the existing understanding while charting a promising path forward for developing innovative MUD treatments, focusing on neuroinflammation as a therapeutic target. Targeting neuroinflammation in METH-induced neurological disorders shows significant promise in mitigating cognitive impairment and neurodegeneration, offering a potential therapeutic strategy for improving outcomes in MUD. While challenges remain in optimizing treatments, ongoing research into combination therapies, novel drug delivery systems, and neuroprotective agents suggests a positive outlook for more effective interventions.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"237-257"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salwa A Elsharabasy, Mariam T Sayed, Anhar Abdel-Aziem
{"title":"Novel coumarin linked pyrazoles, thiazoles, and thiadiazoles: synthetic strategies and in vitro antimicrobial investigation.","authors":"Salwa A Elsharabasy, Mariam T Sayed, Anhar Abdel-Aziem","doi":"10.1080/17568919.2024.2444867","DOIUrl":"10.1080/17568919.2024.2444867","url":null,"abstract":"<p><strong>Aim: </strong>Emerging resistance among pathogens necessitates the development of novel antimicrobial agents. As a result, we aimed to synthesize new coumarins and study their antimicrobial activity with the hope of obtaining effective drugs.</p><p><strong>Method: </strong>A series of coumarins were synthesized, characterized, and assessed for antimicrobial activity using broth microdilution and agar diffusion methods against Gram-positive (<i>Bacillus pumilis, Streptococcus faecalis</i>), Gram-negative (<i>Escherichia coli, Enterobacter cloacae</i>) bacteria, and fungi (<i>Saccharomyces cerevisiae, Candida albicans</i>).</p><p><strong>Results: </strong>Pyrazoles <b>15</b> and <b>16</b> revealed promising activities against all bacterial strains with MIC values ranging from 1.95 to 15.6 µg/ml. Notably, pyrazole <b>15</b> with CF<sub>3</sub> in 3-position of pyrazole ring demonstrated higher ability to inhibit <i>Streptococcus faecalis</i> strain with MIC value equal to penicillin G (3.91 µg/ml). It also exhibited the best bactericidal potency against <i>Escherichia coli</i> with MBC value of 15.6 µg/ml while, pyrazole <b>16</b> recorded the same MBC value against <i>Enterobacter cloacae</i>. Pyrazole <b>15</b> demonstrated the strongest antifungal activity against both fungal strains with MIC and MFC values of 15.6, 7.81, 62.5, and 31.3 µg/ml against <i>Saccharomyces cerevisiae</i> and <i>Candida albicans</i>, respectively.</p><p><strong>Conclusion: </strong>These findings underscore the potential of coumarins, particularly compounds <b>15</b> and <b>16</b>, as effective antimicrobial agents and provide critical insights into the design of bioactive molecules.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"183-193"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking the potential of the thioamide group in drug design and development.","authors":"Guang Huang, Tomasz Cierpicki, Jolanta Grembecka","doi":"10.1080/17568919.2024.2435245","DOIUrl":"10.1080/17568919.2024.2435245","url":null,"abstract":"","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-3"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}