喹唑啉杂合物的抗乳腺癌治疗潜力——第一部分。

IF 3.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Future medicinal chemistry Pub Date : 2025-05-01 Epub Date: 2025-04-30 DOI:10.1080/17568919.2025.2498881
Wei Chen, Ruo Wang, Yidan Lin, Xiaoqiang Wang, Feili Cai, Mengbo Lin, Jiawen Wang, Hui Zhang, Min Chen
{"title":"喹唑啉杂合物的抗乳腺癌治疗潜力——第一部分。","authors":"Wei Chen, Ruo Wang, Yidan Lin, Xiaoqiang Wang, Feili Cai, Mengbo Lin, Jiawen Wang, Hui Zhang, Min Chen","doi":"10.1080/17568919.2025.2498881","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1055-1069"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091908/pdf/","citationCount":"0","resultStr":"{\"title\":\"The antibreast cancer therapeutic potential of quinazoline hybrids-Part I.\",\"authors\":\"Wei Chen, Ruo Wang, Yidan Lin, Xiaoqiang Wang, Feili Cai, Mengbo Lin, Jiawen Wang, Hui Zhang, Min Chen\",\"doi\":\"10.1080/17568919.2025.2498881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1055-1069\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2498881\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2498881","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是女性中最常见的癌症,也是世界各地女性患者癌症相关死亡的主要原因。化疗是乳腺癌治疗的重要手段,化疗可以将早期乳腺癌的复发风险降低约三分之一。然而,多药耐药是对乳腺癌进行有效化疗干预的主要障碍,也是一个日益严峻的临床挑战,迫切需要探索创新的化疗方法来对抗这一可怕的疾病。具有结构和机制多样性的喹唑啉杂交种对乳腺癌(包括耐药形式)表现出良好的活性,并具有减少相应药物团引起的副作用的潜力。值得注意的是,拉帕替尼,一种喹唑啉-呋喃-砜的混合物,已经用于乳腺癌治疗。因此,喹唑啉杂交种为新型化疗药物的开发提供了丰富的资源,用于控制和根除乳腺癌的临床部署。本文综述了具有抗乳腺癌治疗潜力的喹唑啉杂合物的现状,重点关注了从2020年开始发展的结构-活性关系(SARs)和作用模式,以促进更有效的抗乳腺癌候选药物的合理发现。【图:见正文】本综述重点介绍了具有抗乳腺癌治疗潜力的喹唑啉杂化合物的现状,深入探讨了2020年以后发展起来的构效关系和作用机制,旨在促进合理发现更有效、毒性更小的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The antibreast cancer therapeutic potential of quinazoline hybrids-Part I.

Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信