{"title":"喹唑啉杂合物的抗乳腺癌治疗潜力——第一部分。","authors":"Wei Chen, Ruo Wang, Yidan Lin, Xiaoqiang Wang, Feili Cai, Mengbo Lin, Jiawen Wang, Hui Zhang, Min Chen","doi":"10.1080/17568919.2025.2498881","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1055-1069"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091908/pdf/","citationCount":"0","resultStr":"{\"title\":\"The antibreast cancer therapeutic potential of quinazoline hybrids-Part I.\",\"authors\":\"Wei Chen, Ruo Wang, Yidan Lin, Xiaoqiang Wang, Feili Cai, Mengbo Lin, Jiawen Wang, Hui Zhang, Min Chen\",\"doi\":\"10.1080/17568919.2025.2498881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1055-1069\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2498881\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2498881","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The antibreast cancer therapeutic potential of quinazoline hybrids-Part I.
Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.