Yousaf Khan, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Aneela Maalik, Tayyiaba Iqbal, Tariq Aziz, Muhammad Irfan Afridi, Metab Alharbi, Abdullah F Alasmari
{"title":"<i>In-vitro</i> and <i>in-silico</i> assessment of thiazole-thiazolidinone derivatives as selective inhibitors of urease and α-glucosidase.","authors":"Yousaf Khan, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Aneela Maalik, Tayyiaba Iqbal, Tariq Aziz, Muhammad Irfan Afridi, Metab Alharbi, Abdullah F Alasmari","doi":"10.1080/17568919.2024.2432303","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Current research work aims to synthesize hybrid compounds with a thiazole-thiazolidinone structure, as potent inhibitors of urease and α-glucosidase enzymes.</p><p><strong>Materials and methods: </strong>These compounds were characterize through<sup>1</sup>HNMR,<sup>13</sup>CNMR and HREI-MS techniques. These compounds were also evaluated for their potential to inhibit urease and α-glucosidase enzymes for the treatment of urinary tract infections (UTIs) and diabetes treatments. Moreover, molecular docking and ADMET analysis was carried out to confirm biological outcomes.</p><p><strong>Results and conclusion: </strong>Compounds-4 (IC<sub>50</sub> = 1.80 ± 0.80 and 3.61 ± 0.59 μM against urease and α-glucosidase, respectively) exhibited significant effectiveness in inhibiting the activity of both enzymes in comparison to the conventional inhibitors thiourea and acarbose. Molecular docking experiments showed that potent compounds exhibited favorable binding orientations in the active sites of urease and α-glucosidase playing a pivotal role in inhibition profile of these compounds. These compounds were also investigated for their drug likeness and were found with desirable attributes for pharmaceutical development. Based on the findings of this research, these compounds have the potential to be developed into effective anti-diabetic and anti-urease treatments in the future.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-10"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2432303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Current research work aims to synthesize hybrid compounds with a thiazole-thiazolidinone structure, as potent inhibitors of urease and α-glucosidase enzymes.
Materials and methods: These compounds were characterize through1HNMR,13CNMR and HREI-MS techniques. These compounds were also evaluated for their potential to inhibit urease and α-glucosidase enzymes for the treatment of urinary tract infections (UTIs) and diabetes treatments. Moreover, molecular docking and ADMET analysis was carried out to confirm biological outcomes.
Results and conclusion: Compounds-4 (IC50 = 1.80 ± 0.80 and 3.61 ± 0.59 μM against urease and α-glucosidase, respectively) exhibited significant effectiveness in inhibiting the activity of both enzymes in comparison to the conventional inhibitors thiourea and acarbose. Molecular docking experiments showed that potent compounds exhibited favorable binding orientations in the active sites of urease and α-glucosidase playing a pivotal role in inhibition profile of these compounds. These compounds were also investigated for their drug likeness and were found with desirable attributes for pharmaceutical development. Based on the findings of this research, these compounds have the potential to be developed into effective anti-diabetic and anti-urease treatments in the future.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.