Frontiers in Behavioral Neuroscience最新文献

筛选
英文 中文
Traumatic brain injuries: a neuropsychological review. 创伤性脑损伤:神经心理学回顾。
IF 2.6 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI: 10.3389/fnbeh.2024.1326115
Aldrich Chan, Jason Ouyang, Kristina Nguyen, Aaliyah Jones, Sophia Basso, Ryan Karasik
{"title":"Traumatic brain injuries: a neuropsychological review.","authors":"Aldrich Chan, Jason Ouyang, Kristina Nguyen, Aaliyah Jones, Sophia Basso, Ryan Karasik","doi":"10.3389/fnbeh.2024.1326115","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1326115","url":null,"abstract":"<p><p>The best predictor of functional outcome in victims of traumatic brain injury (TBI) is a neuropsychological evaluation. An exponential growth of research into TBI has focused on diagnosis and treatment. Extant literature lacks a comprehensive neuropsychological review that is simultaneously scholarly and practical. In response, our group included, and went beyond a general overview of TBI's, which commonly include definition, types, severity, and pathophysiology. We incorporate reasons behind the use of particular neuroimaging techniques, as well as the most recent findings on common neuropsychological assessments conducted in TBI cases, and their relationship to outcome. In addition, we include tables outlining estimated recovery trajectories of different age groups, their risk factors and we encompass phenomenological studies, further covering the range of existing-promising tools for cognitive rehabilitation/remediation purposes. Finally, we highlight gaps in current research and directions that would be beneficial to pursue.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1326115"},"PeriodicalIF":2.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How the arts heal: a review of the neural mechanisms behind the therapeutic effects of creative arts on mental and physical health. 艺术如何治愈:创意艺术对身心健康的治疗效果背后的神经机制综述。
IF 2.6 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-10-02 eCollection Date: 2024-01-01 DOI: 10.3389/fnbeh.2024.1422361
Kelly Sarah Barnett, Fabian Vasiu
{"title":"How the arts heal: a review of the neural mechanisms behind the therapeutic effects of creative arts on mental and physical health.","authors":"Kelly Sarah Barnett, Fabian Vasiu","doi":"10.3389/fnbeh.2024.1422361","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1422361","url":null,"abstract":"<p><strong>Background: </strong>The creative arts have long been known for their therapeutic potential. These modalities, which include dance, painting, and music, among others, appear to be effective in enhancing emotional expression and alleviating adverse physiological and psychological effects. Engagement in creative arts can be pursued as a personal hobby, in a classroom setting, or through a formal therapeutic intervention with a qualified therapist. Engagement can be active (i.e., creating) or passive (i.e., viewing, listening). Regardless of the modality and manner of engagement, the mechanisms explaining the therapeutic efficacy of creative arts remain poorly understood.</p><p><strong>Objective: </strong>This study aims to systematically review research investigating the neurological mechanisms activated during active or passive engagement in creative arts, with a specific emphasis on the roles of the medial prefrontal cortex (mPFC) and the amygdala in emotional regulation (ER) and creative behaviors. The review seeks to provide preliminary evidence for the possible existence of common neural mechanisms underlying both phenomena, which could inform the development of targeted therapeutic interventions leveraging creative arts for ER.</p><p><strong>Methods: </strong>A systematic review was conducted following the Cochrane Collaboration guideline and PRISMA standards to identify studies examining the neurological mechanisms underlying creative activities.</p><p><strong>Results: </strong>A total of six out of 85 records meet the inclusion criteria, with all being basic research studies. Preliminary findings suggest that active and passive engagement with creative arts consistently activate neural circuits implicated in adaptive emotional regulation, including the mPFC and amygdala. These activations mirror the neural pathways engaged in effective ER strategies, suggesting the possible existence of shared mechanisms between creative expression and emotional processing.</p><p><strong>Conclusion: </strong>The evidence underscores the potential of creative arts as a complementary therapeutic strategy alongside conventional care and other evidence-based mind-body modalities. By elucidating the shared neural mechanisms between creative arts engagement and ER, this review contributes to the theoretical and practical understanding of the role of creative arts in mental health. Future research is recommended to further explore these neural correlations and their implications for therapeutic practice.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1422361"},"PeriodicalIF":2.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease. 睡眠能提高年轻人、老年人和帕金森病患者的泛化运动学习的准确性,但不能提高速度。
IF 2.6 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-26 eCollection Date: 2024-01-01 DOI: 10.3389/fnbeh.2024.1466696
Saar Lanir-Azaria, Rakefet Chishinski, Riva Tauman, Yuval Nir, Nir Giladi
{"title":"Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease.","authors":"Saar Lanir-Azaria, Rakefet Chishinski, Riva Tauman, Yuval Nir, Nir Giladi","doi":"10.3389/fnbeh.2024.1466696","DOIUrl":"10.3389/fnbeh.2024.1466696","url":null,"abstract":"<p><p>An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1466696"},"PeriodicalIF":2.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel aspect of oxytocin neurons mediating parental behavior and aversive burying behavior under the control of melanin-concentrating hormone neurons. 催产素神经元在黑色素浓缩激素神经元控制下介导亲子行为和厌恶性埋藏行为的新方面
IF 2.6 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI: 10.3389/fnbeh.2024.1459957
Tingbi Xiong, Lena Tsuchida, Ayumu Inutsuka, Tatsushi Onaka, Kazuo Yamada, Chitose Orikasa
{"title":"Novel aspect of oxytocin neurons mediating parental behavior and aversive burying behavior under the control of melanin-concentrating hormone neurons.","authors":"Tingbi Xiong, Lena Tsuchida, Ayumu Inutsuka, Tatsushi Onaka, Kazuo Yamada, Chitose Orikasa","doi":"10.3389/fnbeh.2024.1459957","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1459957","url":null,"abstract":"<p><p>Parental behavior comprises a set of crucial actions essential for offspring survival. In this study, a double transgenic mouse model engineered to specifically express channelrhodopsin-2 (ChR2) in paraventricular hypothalamic nucleus (PVN)-oxytocin neurons and ablate lateral hypothalamic area (LHA)-melanin-concentrating hormone (MCH) neurons was used to determine the relationship between PVN-oxytocin neurons and LHA-MCH neurons associated with parental behavior. Optogenetic stimulation of ChR2-expressing PVN-oxytocin neurons induces typical parental behavior with intact LHA-MCH neurons. However, after the partial ablation of LHA-MCH neurons, even optogenetic stimulation of PVN-oxytocin neurons failed to induce parental behavior in virgin male mice, resulting in neglect rather than parental behavior. Furthermore, approximately half of the subjects exhibited burying behavior toward pups, suggesting that pups became aversive stimuli, and male mice actively performed burying behavior to avoid these aversive stimuli. This study emphasizes the novel aspect of oxytocin neurons that could result in neglect in the absence of LHA-MCH neurons regulation.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1459957"},"PeriodicalIF":2.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: From social wires to neurobiological connections: a neuropsychobiological focus on parent-child interaction. 社论:从社会线到神经生物学联系:亲子互动的神经心理生物学焦点。
IF 2.6 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI: 10.3389/fnbeh.2024.1487555
Livio Provenzi, Marina Fuertes, Isabella L C Mariani Wigley, Sarah Nazzari
{"title":"Editorial: From social wires to neurobiological connections: a neuropsychobiological focus on parent-child interaction.","authors":"Livio Provenzi, Marina Fuertes, Isabella L C Mariani Wigley, Sarah Nazzari","doi":"10.3389/fnbeh.2024.1487555","DOIUrl":"10.3389/fnbeh.2024.1487555","url":null,"abstract":"","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1487555"},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in glutamate transmission and plasticity in reward related regions 奖赏相关区域谷氨酸传递和可塑性的性别差异
IF 3 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-18 DOI: 10.3389/fnbeh.2024.1455478
Alyssa R. Kniffin, Lisa A. Briand
{"title":"Sex differences in glutamate transmission and plasticity in reward related regions","authors":"Alyssa R. Kniffin, Lisa A. Briand","doi":"10.3389/fnbeh.2024.1455478","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1455478","url":null,"abstract":"Disruptions in glutamate homeostasis within the mesolimbic reward circuitry may play a role in the pathophysiology of various reward related disorders such as major depressive disorders, anxiety, and substance use disorders. Clear sex differences have emerged in the rates and symptom severity of these disorders which may result from differing underlying mechanisms of glutamatergic signaling. Indeed, preclinical models have begun to uncover baseline sex differences throughout the brain in glutamate transmission and synaptic plasticity. Glutamatergic synaptic strength can be assessed by looking at morphological features of glutamatergic neurons including spine size, spine density, and dendritic branching. Likewise, electrophysiology studies evaluate properties of glutamatergic neurons to provide information of their functional capacity. In combination with measures of glutamatergic transmission, synaptic plasticity can be evaluated using protocols that induce long-term potentiation or long-term depression. This review will consider preclinical rodent literature directly comparing glutamatergic transmission and plasticity in reward related regions of males and females. Additionally, we will suggest which regions are exhibiting evidence for sexually dimorphic mechanisms, convergent mechanisms, or no sex differences in glutamatergic transmission and plasticity and highlight gaps in the literature for future investigation.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"3 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adult auditory brain responses to nestling begging calls in seasonal songbirds: an fMRI study in non-parenting male and female starlings (Sturnus vulgaris) 成年听觉大脑对季节性鸣禽雏鸟乞食叫声的反应:对非亲鸟雄性和雌性椋鸟(Sturnus vulgaris)的 fMRI 研究
IF 3 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-18 DOI: 10.3389/fnbeh.2024.1418577
Nicholas Vidas-Guscic, Elisabeth Jonckers, Johan Van Audekerke, Jasmien Orije, Julie Hamaide, Gaurav Majumdar, Laurence Henry, Martine Hausberger, Marleen Verhoye, Annemie Van der Linden
{"title":"Adult auditory brain responses to nestling begging calls in seasonal songbirds: an fMRI study in non-parenting male and female starlings (Sturnus vulgaris)","authors":"Nicholas Vidas-Guscic, Elisabeth Jonckers, Johan Van Audekerke, Jasmien Orije, Julie Hamaide, Gaurav Majumdar, Laurence Henry, Martine Hausberger, Marleen Verhoye, Annemie Van der Linden","doi":"10.3389/fnbeh.2024.1418577","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1418577","url":null,"abstract":"The present study aims to investigate whether begging calls elicit specific auditory responses in non-parenting birds, whether these responses are influenced by the hormonal status of the bird, and whether they reflect biparental care for offspring in the European starling (<jats:italic>Sturnus vulgaris</jats:italic>). An fMRI experiment was conducted to expose non-parenting male and female European starlings to recordings of conspecific nestling begging calls during both artificially induced breeding and non-breeding seasons. This response was compared with their reaction to conspecific individual warbling song motifs and artificial pure tones, serving as social species-specific and artificial control stimuli, respectively. Our findings reveal that begging calls evoke a response in non-parenting male and female starlings, with significantly higher responsiveness observed in the right Field L and the Caudomedial Nidopallium (NCM), regardless of season or sex. Moreover, a significant seasonal variation in auditory brain responses was elicited in both sexes exclusively by begging calls, not by the applied control stimuli, within a ventral midsagittal region of NCM. This heightened response to begging calls, even in non-parenting birds, in the right primary auditory system (Field L), and the photoperiod induced hormonal neuromodulation of auditory responses to offspring’s begging calls in the secondary auditory system (NCM), bears resemblance to mammalian responses to hunger calls. This suggests a convergent evolution aimed at facilitating swift adult responses to such calls crucial for offspring survival.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"35 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serotonin drives aggression and social behaviors of laboratory male mice in a semi-natural environment 血清素驱动半自然环境中实验雄鼠的攻击和社会行为
IF 3 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-18 DOI: 10.3389/fnbeh.2024.1450540
Marion Rivalan, Lucille Alonso, Valentina Mosienko, Patrik Bey, Alexia Hyde, Michael Bader, York Winter, Natalia Alenina
{"title":"Serotonin drives aggression and social behaviors of laboratory male mice in a semi-natural environment","authors":"Marion Rivalan, Lucille Alonso, Valentina Mosienko, Patrik Bey, Alexia Hyde, Michael Bader, York Winter, Natalia Alenina","doi":"10.3389/fnbeh.2024.1450540","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1450540","url":null,"abstract":"Aggression is an adaptive social behavior crucial for the stability and prosperity of social groups. When uncontrolled, aggression leads to pathological violence that disrupts group structure and individual wellbeing. The comorbidity of uncontrolled aggression across different psychopathologies makes it a potential endophenotype of mental disorders with the same neurobiological substrates. Serotonin plays a critical role in regulating impulsive and aggressive behaviors. Mice lacking in brain serotonin, due to the ablation of tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in serotonin synthesis, could serve as a potential model for studying pathological aggression. Home cage monitoring allows for the continuous observation and quantification of social and non-social behaviors in group-housed, freely-moving mice. Using an ethological approach, we investigated the impact of central serotonin ablation on the everyday expression of social and non-social behaviors and their correlations in undisturbed, group-living <jats:italic>Tph2</jats:italic>-deficient and wildtype mice. By training a machine learning algorithm on behavioral time series, “allogrooming”, “struggling at feeder”, and “eating” emerged as key behaviors dissociating one genotype from the other. Although <jats:italic>Tph2</jats:italic>-deficient mice exhibited characteristics of pathological aggression and reduced communication compared to wildtype animals, they still demonstrated affiliative huddle behaviors to normal levels. Altogether, such a distinct and dynamic phenotype of <jats:italic>Tph2</jats:italic>-deficient mice influenced the group's structure and the subsequent development of its hierarchical organization. These aspects were analyzed using social network analysis and the Glicko rating methods. This study demonstrates the importance of the ethological approach for understanding the global impact of pathological aggression on various aspects of life, both at the individual and group levels. Home cage monitoring allows the observation of the natural behaviors of mice in a semi-natural habitat, providing an accurate representation of real-world phenomena and pathological mechanisms. The results of this study provide insights into the neurobiological substrate of pathological aggression and its potential role in complex brain disorders.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"21 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parkinson’s LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress 帕金森氏症 LRRK2-G2019S 风险基因突变促使不同性别的行为和细胞适应慢性可变压力
IF 3 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-12 DOI: 10.3389/fnbeh.2024.1445184
Christopher A. Guevara, Kumayl Alloo, Swati Gupta, Romario Thomas, Pamela del Valle, Alexandra R. Magee, Deanna L. Benson, George W. Huntley
{"title":"Parkinson’s LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress","authors":"Christopher A. Guevara, Kumayl Alloo, Swati Gupta, Romario Thomas, Pamela del Valle, Alexandra R. Magee, Deanna L. Benson, George W. Huntley","doi":"10.3389/fnbeh.2024.1445184","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1445184","url":null,"abstract":"Anxiety is a psychiatric non-motor symptom of Parkinson’s that can appear in the prodromal period, prior to significant loss of midbrain dopamine neurons and motor symptoms. Parkinson’s-related anxiety affects females more than males, despite the greater prevalence of Parkinson’s in males. How stress, anxiety and Parkinson’s are related and the basis for a sex-specific impact of stress in Parkinson’s are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 (<jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup>) and <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> control mice. In humans, <jats:italic>LRRK2</jats:italic><jats:sup>G2019S</jats:sup> significantly elevates the risk of late-onset Parkinson’s. To assess within-sex differences between <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> and <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice while significantly increasing latency to feed in <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> control mice. Female <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice was generally lower compared to stressed <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> mice, except for the nucleus accumbens of male <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in some, but not all stress-related brain regions.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"111 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the influence of persuasion strategies on cognitive engagement: an ERPs study on attentional search 揭示说服策略对认知参与的影响:关于注意力搜索的ERPs研究
IF 3 3区 医学
Frontiers in Behavioral Neuroscience Pub Date : 2024-09-10 DOI: 10.3389/fnbeh.2024.1302770
Lichao Xiu, Xuejiao Chen, Lulu Mao, Enyu Zhang, Guoming Yu
{"title":"Unveiling the influence of persuasion strategies on cognitive engagement: an ERPs study on attentional search","authors":"Lichao Xiu, Xuejiao Chen, Lulu Mao, Enyu Zhang, Guoming Yu","doi":"10.3389/fnbeh.2024.1302770","DOIUrl":"https://doi.org/10.3389/fnbeh.2024.1302770","url":null,"abstract":"The objective of this study was to explore the impact of different persuasive strategies, as delineated in the Elaboration Likelihood Model (ELM), on attentional processes using event-related potentials (ERPs).IntroductionThis study aimed to investigate how central versus peripheral persuasion methods, delivered through rational and emotional persuasion strategies, influence cognitive engagement and information processing during visual search tasks.MethodsParticipants were allocated into four groups based on the media type (video vs. text) and the persuasion route (central vs. peripheral). The early and late stages of attentional processing were examined through the N1, P2, and P3 ERP components.ResultsThe results demonstrated a pronounced N1 amplitude in response to text-based peripheral persuasion, indicating enhanced early attentional engagement. Additionally, parallel search tasks revealed a larger P3 amplitude for central versus peripheral routes, suggesting significant cognitive resource allocation during tasks requiring higher attention.DiscussionThese findings underscore the nuanced role of persuasive strategies in modulating attentional resources and cognitive processing. The study offers insights into designing more effective communication messages and highlights the potential for tailored persuasion approaches to influence audience engagement and information processing, with implications for public health campaigns and beyond.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"9 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信