Lin Teng, Yuanyuan He, Yan Wang, Changze Sun, Jianhua Yan
{"title":"Numerical stability assessment of a mining slope using the synthetic rock mass modeling approach and strength reduction technique","authors":"Lin Teng, Yuanyuan He, Yan Wang, Changze Sun, Jianhua Yan","doi":"10.3389/feart.2024.1438277","DOIUrl":"https://doi.org/10.3389/feart.2024.1438277","url":null,"abstract":"Structurally controlled slope failure in open-pit mining occurs when the shear stress acting on the geological structure exceeds its shear strength. Mining slope stability is an extremely important topic from the ramifications of safety, social, economic, environmental and regulatory factors. This study reports the engineering geological setting of a bedded mining slope in China, and evaluates its stability via a numerical approach. First, a slope profile model is constructed using a synthetic rock mass (SRM) modeling approach. More specifically, the mechanical behavior of colluvium, intact rock and discontinuities are represented by linear contact model, bonded particle model and smooth joint model, respectively. Then, the factor of safety (FOS) and instability process are investigated by integrating the discrete fracture network (DFN)-distinct element method (DEM) and strength reduction technique (SRT). In addition, shear stress analyses of colluvium and bedrock are conducted for revealing the potential failure mechanism. Finally, the well-established limit equilibrium (LEM) and finite element method (FEM) are adopted for simulation results comparison and validation.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"21 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Li, Jianguo Wang, Zezhang Yu, Shengyun Wei, Haidong Ren, Ming Ma, Zhinan Wang, Jian Hu
{"title":"Frontiers | Ore genesis of the Chazangcuo Cu-Pb-Zn deposit in Tibet: Evidence from mineralogy, fluid inclusions, S-Pb isotopes, and elemental geochemistry","authors":"Yan Li, Jianguo Wang, Zezhang Yu, Shengyun Wei, Haidong Ren, Ming Ma, Zhinan Wang, Jian Hu","doi":"10.3389/feart.2024.1420043","DOIUrl":"https://doi.org/10.3389/feart.2024.1420043","url":null,"abstract":"The Chazangcuo copper-lead-zinc deposit (hereafter referred to as the Chazangcuo deposit) is situated in the northern portion of the western section of the Gangdese polymetallic metallogenic belt in Tibet, with ore bodies strictly governed by Linzizong Group magmatic rocks and EW-trending faults. This study aims to ascertain the mineralization periods, sources of ore-forming materials, metallogenic physicochemical conditions, and genesis of this deposit. Based on comprehensive field geological surveys, sampling, and microscopic examination of petrological and mineralogical characteristics, we perform qualitative and quantitative geochemical analyses of major elements, trace elements, and rare earth elements (REEs), fluid inclusions, and sulfur and lead isotopes. The findings reveal that the mineralization process of the Chazangcuo deposit can be divided into three periods and four stages: the magmatic-hydrothermal, hydrothermal, and supergene mineralization periods sequentially, which consist of the mineralization stages of quartz-pyrite-sphalerite, medium-low-temperature hydrothermal sulfides, chlorite-carbonate minerals, and supergene oxidation in a chronological order. The ore-forming fluids prove to be medium-low-temperature low-density fluids, and the ore-forming materials are characteristic of upper crustal-derived materials. The ore-forming environment is a medium-low mineralization temperature, a shallow and weakly reducing environment. Overall, the Chazangcuo deposit is identified as a medium-low-temperature magmatic-hydrothermal deposit. The metallogenic model has the vertical zoning characteristics of lead-zinc in the upper part and copper in the lower part.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"18 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Climate decision making: influence of prevailing social norms and probability of climate change","authors":"Gitanshu Choudhary, Danish Sihag, Varun Dutt","doi":"10.3389/feart.2024.1397857","DOIUrl":"https://doi.org/10.3389/feart.2024.1397857","url":null,"abstract":"IntroductionThe global rise in climatic calamities necessitates effective strategies for understanding and addressing Earth’s climate complexities. Although recent research underscores simulation tools’ effectiveness in elucidating complex concepts related to Earth’s climate, partner influence on climatic decisions within simulation studies has been overlooked.MethodsEmploying the Partner Interactive Climate Change Simulator (P-ICCS), we examined 180 participants across varied conditions. The study manipulated partner nature (optimal, irrational, or none) and climate change probability (high or low) to observe effects on participants’ responses (mitigation or adaptation) within P-ICCS.ResultsResults revealed a significant impact of partner presence, with the optimal partner notably enhancing monetary investments against climate change compared to the irrational partner. Intriguingly, climate change probability did not sway participants’ investment behavior.DiscussionThe findings emphasize the pivotal role of partner influence in climate decision-making, offering insights for effective mitigation and adaptation strategies.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"172 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Ren, Jiakun Wang, Rui Chen, Hong Li, Dongli Xu, Lihua Yan, Jingyuan Song
{"title":"Remote sensing identification of shallow landslide based on improved otsu algorithm and multi feature threshold","authors":"Jing Ren, Jiakun Wang, Rui Chen, Hong Li, Dongli Xu, Lihua Yan, Jingyuan Song","doi":"10.3389/feart.2024.1473904","DOIUrl":"https://doi.org/10.3389/feart.2024.1473904","url":null,"abstract":"In low-resolution remote sensing images under complex lighting conditions, there is a similarity in spectral characteristics between non-landslide areas and landslide bodies, which increases the probability of misjudgment in the identification process of shallow landslide bodies. In order to further improve the accuracy of landslide identification, a shallow landslide remote sensing identification method based on an improved Otsu algorithm and multi-feature threshold is proposed for the temporary treatment project of the Yangjunba disaster site in Leshan City. Using Retinex theory, remote sensing images are enhanced with local linear models and guided filtering; then, multi-feature scales and sliding window calculations of opening and closing transformations identify potential landslide areas, which are finally segmented using the Otsu algorithm. Through experimental verification, the method proposed in this article can clearly segment the target object and background after binary segmentation of remote sensing images. The recognition rate of shallow landslide bodies is not less than 95%, indicating that the method proposed in this article is relatively accurate in identifying shallow landslide bodies in the research area and has good application effects.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"6 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontiers | A semi-automatic interpretation method for utilizing InSAR results to recognize active landslides considering causative factors","authors":"Weiming Liao, Pengyuan Liu, Yanfei Kang, Lichuan Chen, Manqian Liu, Minyan Liao","doi":"10.3389/feart.2024.1482940","DOIUrl":"https://doi.org/10.3389/feart.2024.1482940","url":null,"abstract":"Synthetic Aperture Radar Interferometry (InSAR), which can map subtle ground displacement over large areas, has been widely utilized to recognize active landslides. Nevertheless, due to various origins of subtle ground displacement, their presence on slopes may not always reflect the occurrence of active landslides. Therefore, interpretation of exact landslide-correlated deformation from InSAR results can be very challenging, especially in mountainous areas, where natural phenomenon like soil creep, anthropogenic activities and erroneous deformational signals accumulated during InSAR processing can easily lead to misinterpretation. In this paper, a two-phase interpretation method applicable to regional-scale active landslide recognition utilizing InSAR results is presented. The first phase utilizes statistical threshold and clustering analysis to detect unstable regions mapped by InSAR. The second phase introduces landslide susceptibility combined with empirical rainfall threshold, which are considered as causative factors for active landslides triggered by rainfall, to screen unstable regions indicative of active landslides. A case study validated by field survey indicates that the proposed interpretation method, when compared to a baseline model reported in the literature, can achieve better interpretation accuracy and miss rate.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"206 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontiers | Study on the evolution of fractures in overlying strata during repeated mining of coal seams at extremely close distances","authors":"Daming Yang, Yun Sun, Jiabo Xu, Linshuang Zhao","doi":"10.3389/feart.2024.1472939","DOIUrl":"https://doi.org/10.3389/feart.2024.1472939","url":null,"abstract":"In particular, the secondary development of overlying strata fractures can easily lead to the upper goaf, resulting in gas and water gathered in the goaf entering the working face of the lower coal seam through the overlying strata fractures, threatening the safety of coal mine production. Security risks may arise. To further understand the caving and evolution law of overlying strata during repeated mining in extremely close distance coal seam down mining, 9# coal and 10# coal in the Nanyaotou Coal Industry were used as the engineering background. The caving characteristics and fracture evolution law of overlying strata during single and repeated mining were analyzed through similar material simulation tests. Based on fractal geometry theory, the relationship between the advancing distance of the working face and the fractal dimension of the overlying strata fracture is established to reflect the changing trend of fracture development. The calculation formula is derived from the tensile rate of rock strata to predict the development height of water-conducting fractures. The results show that the overlying strata failure structure is mainly a “hinged structure” and a “step structure,” which respectively promotes and inhibits the development of overlying strata fractures. Repeated mining causes mining-induced fractures in the lower coal seam to pass through the goaf of the upper coal seam and develop more vigorously in the upper coal seam, and the fractal dimension can effectively reflect the development of overlying strata fractures. The height of the water-conducting fracture zone increases in four stages: incubation, gradual increase, further gradual increase, and stability, eventually stopping development under the influence of the key layer (thick mudstone) bearing the load above. The development height of water-conducting fractures predicted by on-site water injection measurement is similar to that predicted by simulation experiments and theoretical calculations, verifying the feasibility of predicting the development height of water-conducting fractures through simulation tests and theoretical analysis. This study provides a reference for coal seam mining under similar conditions.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"32 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple geochemical parameters of the Wuliying well of Beijing seismic monitoring networks probably responding to the small earthquake of Chaoyang, Beijing, in 2022","authors":"Yuxuan Chen, Guiping Liu, Fuqiong Huang, Zhiguo Wang, Leyin Hu, Mingbo Yang, Xiaoru Sun, Peixue Hua, Shijun Zhu, Yanan Zhang, Xiaodong Wu, Zhihui Wang, Lvqing Xu, Kongyan Han, Bowen Cui, Hongyan Dong, Yonggang Zhou","doi":"10.3389/feart.2024.1448035","DOIUrl":"https://doi.org/10.3389/feart.2024.1448035","url":null,"abstract":"Hydrological changes in groundwater coupled with earthquakes had been documented in previous studies by global researchers. Although few reports investigate multiple geochemical parameters that respond to earthquakes, trace elements received less attention, whereas they were suggested to be more sensitive to small earthquakes than the commonly used geochemical parameters. Beijing is located in the Zhangjiakou-Bohai (Zhang-Bo) seismic belt of North China, and although the occurrence of small earthquakes is frequent, the great historic earthquake in the Sanhe-Pinggu area M8 in 1679 in the adjoining southeast of Beijing gained widespread public attention. To find effective precursors that are significant for operational earthquake forecasting of the Beijing area, we carried out a one year test research project through weekly collection of groundwater samples during June 2021 to June 2022 from the seismic monitoring well of Wuliying in northwest Beijing. The 41 trace elements chemical compositions were analyzed for each sample. During the project ongoing period, the biggest earthquake with a magnitude of ML3.3 occurred in the Chaoyang District of Beijing on 3 February 2022. The content changes in these trace elements were systematically monitored before and after the earthquake. Through retrospective research, it was found that a few sensitive trace elements were anomalous to be coupled to the earthquake, including Li, Sc, Rb, Mo, Cs, Ba, W, U, Sr, Mn, Ni, and Zn. In addition to trace elements, we examined stable isotopes of hydrogen and oxygen and the existing hydrological data on groundwater level, temperature, major ions, and gases to assess the validity of geochemistry as a monitoring and predictive tool. We only found that F- (fluorine) ions and He (helium) gas had apparent shifts related to the earthquakes, while no shifts in the groundwater level were observed. Such characteristics of multiple geochemical parameters indicate that trace elements are likely to be more sensitive to crustal strain than the groundwater level and major ions. We assumed a most likely mechanism of the combination of mixing and water–rock interactions to explain the phenomenon. The probable scenario was that minor stresses caused by the earthquakes might create micro-cracks in bedrocks, thereby leading to a small volume of chemically distinct water mixing with the original water of the aquifer, and finally, the earthquake-induced rock fractures enhance the water–rock interactions, resulting in the post-seismic recovery of trace elements and δ<jats:sup>18</jats:sup>O value migration to the GWML. More testing works to find other sensitive sites to investigate multiple geochemical characteristics aiming at long-term to short-term earthquake prediction in the Beijing area and Zhang-Bo seismic belt are in progress.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"2016 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative study on toppling deformation zoning of antidip rock slope under different soft and hard rock conditions","authors":"Junchao Cai, Jiangtao Liu, Jie Zhang, Junping Wang, Shuo Zhang, Guoqing Qi","doi":"10.3389/feart.2024.1447578","DOIUrl":"https://doi.org/10.3389/feart.2024.1447578","url":null,"abstract":"Toppling deformation can be classified into deep toppling (DT) and shallow toppling (ST) based on deformation mechanisms and development depth of rock mass under different soft and hard rock conditions. Currently, the toppling zoning indicators and quantitative criteria are not uniform, and human factors have a significant influence on the toppling zoning indicators. Summerizing and analyzing the existing toppling cases and toppling zoning researches, this study selects rock layer toppled angle, maximum tension within layer, unit tension within layer, and longitudinal wave velocity as indicators for toppling zoning. Considering the differences in the characteristics of deep toppling (DT) and shallow toppling (ST), the quantitative criteria for the deep and shallow toppling zoning indicators are determined respectively. This study employs the Analytic Hierarchy Process (AHP) and fuzzy comprehensive evaluation method to establish toppling zoning evaluation models. The deep toppling dam site slope at Miaowei hydropower station and the shallow toppling bank slope of Xingguang Ⅲ formation at Xiluodu Hydropower Station were tested, respectively. These results are compared with toppling zoning of field surveys to verify the rationality and applicability of the models. This achievement holds significant reference value for the toppling zoning of rock masses in engineering slopes, especially in the construction, development, and engineering management of toppling slopes.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"27 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genesis of Permian granitoids in the southeast of Inner Mongolia and their response to the Xing’an-Mongolia orogenic belt evolution: constraints from zircon U-Pb age, geochemistry and Hf isotopes","authors":"Xiaogang Xue, Peng Zhang, Guoqiang Chen, Haihong Zhang, Xuebin Zhang","doi":"10.3389/feart.2024.1437599","DOIUrl":"https://doi.org/10.3389/feart.2024.1437599","url":null,"abstract":"Research on the geological process of the Xing’an - Mongolia Orogenic Belt has attracted the attention of scholars both domestically and internationally. Its genesis and tectonic location may help revealing the geological processes asscoaited with the evolution of the Xing’an - Mongolia Orogenic Belt. This study focuses on the development of the Permian granitic complex in Jielin Ranch, and we conduct systematic geological, petrographic, zircon U-Pb chronology, Hf isotope, and geochemical tracing of rock elements for evidence. The results show that the granitic complex is mainly composed of monzogranite and syenogranite, which obtained zircon U-Pb ages of 291.1 ± 1.1 Ma and 260.8 ± 1.1 Ma, respectively. The monzogranite and syenogranite are all acidic and aluminum rich rocks, and the monzogranite is a potassium rich, high potassium calcium alkaline rock series with relatively low REE content, high degree of fractionation, and insignificant europium anomalies, enriched with LILE (Rb, Th, U, K), deficient elements such as Ba, Sr, Nb, Ti, and P, εHf(t) values are from +4.1 to +7.0 (T<jats:sub>DM2</jats:sub>=1130–920 Ma). Geochemistry shows that the monzogranite belongs to high fractionation of I-type granite, which formed in a subduction-compressional or extension tectonic environment, and Middle Neoproterozoic lower crust rocks as the major source material of magma. The syenogranite is a potassium high potassium transitional rock series with a high rare earth content (214 × 10<jats:sup>−6</jats:sup>∼325 × 10<jats:sup>−6</jats:sup>), low LREE/HREE (2.54–6.41), δEu (0.04–0.15) and the typical “four component effect” fractionation mode is enriched in large ion lithophilic elements such as Rb, Th, K, and strongly depleted in elements such as Ba, Sr, Nb, Ta, Ti, P, εHf(t) values are from +4.2 to +8.6 (T<jats:sub>DM2</jats:sub>=738–1228 Ma), suggesting the characteristics of an “A<jats:sub>2</jats:sub> type” granite. The magma originated from partial melting of the lower crust of the Middle and Neoproterozoic with the participation of mantle derived melts, and was formed in a back-arc extensional environment. This suggests that the study area experienced a subduction-compressional or extension tectonic environment during the early Permian and a brief backarc extension process in the late Permian.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"47 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detrital zircon U-Pb geochronology of sediments from the Okinawa Trough: implications for sedimentary provenance","authors":"Bao-Ju Yang, Ji-Hua Liu, Yong-Hua Wu","doi":"10.3389/feart.2024.1450319","DOIUrl":"https://doi.org/10.3389/feart.2024.1450319","url":null,"abstract":"In order to distinguish terrestrial material sources in the Okinawa Trough (OT), this study analyzed four surface sediment samples from the northern, middle, and southern parts of the OT using detrital zircon U-Pb age analysis. The detrital zircon age distributions in the northern Okinawa Trough (N-OT) predominantly fall into 1,000−2,300 Ma and 100−600 Ma age groups. In contrast, in the middle Okinawa Trough (M-OT) and southern Okinawa Trough (S-OT), the detrital zircon age groups of 100−600 Ma and 600–1,000 Ma increase significantly, while the age groups of 1,000−2,300 Ma and &gt;2,300 Ma decrease. Detrital zircons from the N-OT primarily originate from the Yellow River and mixed with the Old Yellow River, while those from the M-OT come mainly from the Yellow River, Yangtze Rivers, and East China Sea. And Zhuoshui River maybe a potential source for the M-OT. The detrital zircons from the S-OT are mainly influenced by the Yangtze River, with some effects from the Lanyang River. This study utilizes detrital zircon U-Pb age analysis to gain a better understanding of the terrestrial material sources in various regions of the OT. Most of the zircon grain are coarse, with grain sizes of 40–150 μm long and 30–100 μm wide in the N-OT, smaller in the M-OT and S-OT in this study, which are probably not modern deposits, but the products in the low sea level period of last glaciation mixed with modern sediments. The transport and sedimentation processes reflect the comprehensive influence of sea level change, Kuroshio Current, river input, East Asian monsoon and other factors from last glaciation to present.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"28 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}