Jing Ren, Jiakun Wang, Rui Chen, Hong Li, Dongli Xu, Lihua Yan, Jingyuan Song
{"title":"基于改进的大津算法和多特征阈值的浅层滑坡遥感识别","authors":"Jing Ren, Jiakun Wang, Rui Chen, Hong Li, Dongli Xu, Lihua Yan, Jingyuan Song","doi":"10.3389/feart.2024.1473904","DOIUrl":null,"url":null,"abstract":"In low-resolution remote sensing images under complex lighting conditions, there is a similarity in spectral characteristics between non-landslide areas and landslide bodies, which increases the probability of misjudgment in the identification process of shallow landslide bodies. In order to further improve the accuracy of landslide identification, a shallow landslide remote sensing identification method based on an improved Otsu algorithm and multi-feature threshold is proposed for the temporary treatment project of the Yangjunba disaster site in Leshan City. Using Retinex theory, remote sensing images are enhanced with local linear models and guided filtering; then, multi-feature scales and sliding window calculations of opening and closing transformations identify potential landslide areas, which are finally segmented using the Otsu algorithm. Through experimental verification, the method proposed in this article can clearly segment the target object and background after binary segmentation of remote sensing images. The recognition rate of shallow landslide bodies is not less than 95%, indicating that the method proposed in this article is relatively accurate in identifying shallow landslide bodies in the research area and has good application effects.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote sensing identification of shallow landslide based on improved otsu algorithm and multi feature threshold\",\"authors\":\"Jing Ren, Jiakun Wang, Rui Chen, Hong Li, Dongli Xu, Lihua Yan, Jingyuan Song\",\"doi\":\"10.3389/feart.2024.1473904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In low-resolution remote sensing images under complex lighting conditions, there is a similarity in spectral characteristics between non-landslide areas and landslide bodies, which increases the probability of misjudgment in the identification process of shallow landslide bodies. In order to further improve the accuracy of landslide identification, a shallow landslide remote sensing identification method based on an improved Otsu algorithm and multi-feature threshold is proposed for the temporary treatment project of the Yangjunba disaster site in Leshan City. Using Retinex theory, remote sensing images are enhanced with local linear models and guided filtering; then, multi-feature scales and sliding window calculations of opening and closing transformations identify potential landslide areas, which are finally segmented using the Otsu algorithm. Through experimental verification, the method proposed in this article can clearly segment the target object and background after binary segmentation of remote sensing images. The recognition rate of shallow landslide bodies is not less than 95%, indicating that the method proposed in this article is relatively accurate in identifying shallow landslide bodies in the research area and has good application effects.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1473904\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1473904","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Remote sensing identification of shallow landslide based on improved otsu algorithm and multi feature threshold
In low-resolution remote sensing images under complex lighting conditions, there is a similarity in spectral characteristics between non-landslide areas and landslide bodies, which increases the probability of misjudgment in the identification process of shallow landslide bodies. In order to further improve the accuracy of landslide identification, a shallow landslide remote sensing identification method based on an improved Otsu algorithm and multi-feature threshold is proposed for the temporary treatment project of the Yangjunba disaster site in Leshan City. Using Retinex theory, remote sensing images are enhanced with local linear models and guided filtering; then, multi-feature scales and sliding window calculations of opening and closing transformations identify potential landslide areas, which are finally segmented using the Otsu algorithm. Through experimental verification, the method proposed in this article can clearly segment the target object and background after binary segmentation of remote sensing images. The recognition rate of shallow landslide bodies is not less than 95%, indicating that the method proposed in this article is relatively accurate in identifying shallow landslide bodies in the research area and has good application effects.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.