Wenzheng Li, Jianyong Zhang, Xinjian Zhu, Yongxiao Wang, Xingwang Tian, Xiaodong Fu, Hua Jiang, Yuan Zhong, Shugen Liu, Rong Li, Bing Pan, Bin Deng
{"title":"Late Ediacaran to Early Cambrian stratigraphic correlation and its geological implications in the northwestern Sichuan Basin: insights from phosphorus, isotopes, and small shelly fossils","authors":"Wenzheng Li, Jianyong Zhang, Xinjian Zhu, Yongxiao Wang, Xingwang Tian, Xiaodong Fu, Hua Jiang, Yuan Zhong, Shugen Liu, Rong Li, Bing Pan, Bin Deng","doi":"10.3389/feart.2024.1440117","DOIUrl":"https://doi.org/10.3389/feart.2024.1440117","url":null,"abstract":"The characteristics of elements, isotopes, and small shelly fossils were investigated for Late Ediacaran to Early Cambrian stratigraphy division and to discuss their geological implications in the northwestern Sichuan Basin. The results reveal that small shelly fossils can be detected in the high-phosphorous section, with the concentration of phosphorus mainly ranging from 2% to 8%, suggesting that this interval belongs to the Early Cambrian, which is also consistent with the carbon isotopic composition results. In addition, the Early Cambrian is denudated in the Sichuan Basin due to tectonic movement, and the characteristics of some isotopes and small shell fossils are different from those in other basins. It can be proposed that P content can support the recognition of lithological boundaries, and the high phosphorus content can be used as a reference to identify the top and bottom boundaries of the Maidiping Formation in the study area. According to the elemental compositions in the Ediacaran Dengying Formation, the variations in Si, Al, Fe, and K contents are similar in the platform area and rift area, suggesting that the third and fourth member of the Dengying Formation are also developed in the Deyang–Anyue Rift. The results suggest that both the Deng-4 member and Maidiping Formation feature contemporaneous deposition of different facies in the northwestern Sichuan Basin. The strata consist of shale intercalated with thin carbonate rock deposits in the Deyang–Anyue Rift, while carbonate rock deposits in the platform. The Deyang–Anyue Rift expanded gradually in the Late Ediacaran and eventually filled in the Early Cambrian. The data in this study illustrate that elemental compositions, isotopes, and small shelly fossils can be combined to correlate the Late Ediacaran to Early Cambrian strata and provide new evidence for Deyang–Anyue Rift evolution. The results offer some new insights for deep oil and gas exploration in the Sichuan Basin and for the tectonic–depositional–environmental–biological synergistic evolution in the Late Ediacaran to Early Cambrian transition.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lewis J. Gramer, John Steffen, Maria Aristizabal Vargas, Hyun-Sook Kim
{"title":"The impact of coupling a dynamic ocean in the Hurricane Analysis and Forecast System","authors":"Lewis J. Gramer, John Steffen, Maria Aristizabal Vargas, Hyun-Sook Kim","doi":"10.3389/feart.2024.1418016","DOIUrl":"https://doi.org/10.3389/feart.2024.1418016","url":null,"abstract":"Coupling a three-dimensional ocean circulation model to an atmospheric model can significantly improve forecasting of tropical cyclones (TCs). This is particularly true of forecasts for TC intensity (maximum sustained surface wind and minimum central pressure), but also for structure (e.g., surface wind-field sizes). This study seeks to explore the physical mechanisms by which a dynamic ocean influences TC evolution, using an operational TC model. The authors evaluated impacts of ocean-coupling on TC intensity and structure forecasts from NOAA’s Hurricane Analysis and Forecast System v1.0 B (HFSB), which became operational at the NOAA National Weather Service in 2023. The study compared existing HFSB coupled simulations with simulations using an identical model configuration in which the dynamic ocean coupling was replaced by a simple diurnally varying sea surface temperature model. The authors analyzed TCs of interest from the 2020–2022 Atlantic hurricane seasons, selecting forecast cycles with small coupled track-forecast errors for detailed analysis. The results show the link between the dynamic, coupled ocean response to TCs and coincident TC structural changes directly related to changing intensity and surface wind-field size. These results show the importance of coupling in forecasting slower-moving TCs and those with larger surface wind fields. However, there are unexpected instances where coupling impacts the near-TC atmospheric environment (e.g., mid-level moisture intrusion), ultimately affecting intensity forecasts. These results suggest that, even for more rapidly moving and smaller TCs, the influence of the ocean response to the wind field in the near-TC atmospheric environment is important for TC forecasting. The authors also examined cases where coupling degrades forecast performance. Statistical comparisons of coupled versus uncoupled HFSB further show an interesting tendency: high biases in peak surface winds for the uncoupled forecasts contrast with corresponding low biases, contrary to expectations, in coupled forecasts; the coupled forecasts also show a significant negative bias in the radii of 34 kt winds relative to National Hurricane Center best track estimates. By contrast, coupled forecasts show very small bias in minimum central pressure compared with a strong negative bias in uncoupled. Possible explanations for these discrepancies are discussed. The ultimate goal of this work will be to enable better evaluation and forecast improvement of TC models in future work.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"5 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven multiscale geomechanical modeling of unconventional shale gas reservoirs: a case study of Duvernay Formation, Alberta, West Canadian Basin","authors":"Yue Xiao, Weidong Jiang, Chong Liang","doi":"10.3389/feart.2024.1437255","DOIUrl":"https://doi.org/10.3389/feart.2024.1437255","url":null,"abstract":"The Duvernay Formation in Canada is one of the major oil and gas source formations in the Western Canadian Sedimentary Basin, located at its deepest point. While it demonstrates promising development potential, challenges arise in the urgent need for integration of geology and engineering models, as well as in optimizing sweet spots, particularly as infill wells and pads become central operational objectives for the shale gas field. A lack of the geomechanical understanding of shale gas reservoirs presents a significant obstacle in addressing these challenges. To overcome this, we implemented data acquisition and prepared historical models and profiles, resulting in an extended high-resolution geological and reservoir property model with a fine grid system. Subsequently, a 3D full-field multi-scale geomechanical model was constructed for the main district by integrating seismic data (100 m), geological structures (km), routine logs (m), core data (cm), and borehole imaging (0.25 m), following a well-designed workflow. The predicted fracturability index (brittleness) ranges from 0.6 to 0.78, and a lower horizontal stress difference (STDIFF) is anticipated in the target formation, Upper Duvernay_D, making it a favorable candidate for hydraulic fracturing treatment. Post-analysis of the multi-disciplinary models and various data types provides guidelines for establishing a specific big database, which serves as the foundation for production performance analysis and aggregate sweet spot analysis. Fourteen geological and geomechanical candidate parameters are selected for the subsequent sweet spot analysis. This study highlights the effectiveness of multi-scale geomechanical modeling as a tool for the integration of multi-disciplinary data sources, providing a bridge between geological understanding and future field development decisions. The workflows also offer a data-driven framework for selecting parameters for sweet spot analysis and production dynamic analysis.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"58 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of stress unloading rate on fine-scale deformation mechanism of rock under high osmotic pressure","authors":"Weiji Sun, Xu Qin, Qiang Liu, Yujun Zhang, Wenfei Ma, Yangqi Ma, Jingang Gao","doi":"10.3389/feart.2024.1445254","DOIUrl":"https://doi.org/10.3389/feart.2024.1445254","url":null,"abstract":"To explore the influence of the working face excavation rate on the rock deformation mechanism and seepage characteristics, deformation and seepage tests of sandstone under different loading and unloading stress paths, such as constant axial pressure unloading confining pressure and loading axial pressure unloading confining pressure, were carried out. Particle Flow Code in 3 Dimensions (PFC<jats:sup>3D</jats:sup>) and Python were used to realize fluid-solid coupling, and numerical simulation calculations were performed along the test path to analyze the influence of the unloading rate on the fine-scale deformation mechanism and permeability characteristics of sandstone, and the relationship between crack type and permeability was obtained. A sandstone fracture mechanics model is established to analyze the stress concentration degree at the end of the branch crack of the test path. The results show that the rate of confining pressure unloading is inversely proportional to the strain. Additionally, permeability correlates with the principal stress difference in an exponential manner. Interestingly, the sensitivity of permeability to stress shows an inverse trend with the unloading rate of confining pressure. Furthermore, there exists a linear relationship between permeability and the number of cracks. During the unloading process, tensile cracks predominate, and the propagation of shear cracks lags behind that of tensile cracks. The proportion of tensile cracks decreases with the increase of the unloading rate when the axial pressure is unchanged but increases when axial pressure is added, resulting in axial compression deformation and expansion deformation along the unloading direction. These research outcomes offer theoretical insights for the prudent selection of mining rates, and they hold significant implications for mitigating water inrush disasters in deep mining operations.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"82 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontiers | Influence of the Different Stress Paths on Rock Deformation Memory Effects using the Deformation Rate Analysis Method","authors":"Lingwei Zhong, Xuhua Ren, Haijun Wang, Guangchuan Zhao, Yang Li, Jiawei Zhu","doi":"10.3389/feart.2024.1459447","DOIUrl":"https://doi.org/10.3389/feart.2024.1459447","url":null,"abstract":"Deformation memory effect (DME) is a common property of the rock. A method called Deformation Rate Analysis (DRA) which is based on DME provides a brand-new approach to measuring in situ stress. When rock DME is applied in engineering, it is necessary to solve the problem that which stress peak is corresponding to in situ stress. The standard square samples made of sandstone and granite were selected to investigate the rock DME under different stress paths. Then a memory theoretical model based on multi-surface sliding friction hysteresis is used to analyze the mechanisms of rock DME. The results show that: (1) Rocks always remember the maximum peak stress from preloading, regardless of the sequence of multiple preloading; (2) Multi-memory exists in tests because we found another inflection in DRA curve; (3) The memory model based on sliding friction hysteresis shows the precision of memory information formation increases as the historical maximum peak value gets closer to the measurement load, but multi-memory does not exist in theoretical analysis. The conclusion provides the rule of rock DME under different stress path which would benefits in in situ stress reconstruction.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"523 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation and prediction of land subsidence in Decheng District under the constraint of InSAR deformation information","authors":"Jinming Hu, Beibei Chen, Xiaoyu Chu, Huili Gong, Chaofan Zhou, Yabin Yang, Xiaoxiao Sun, Danni Zhao","doi":"10.3389/feart.2024.1458416","DOIUrl":"https://doi.org/10.3389/feart.2024.1458416","url":null,"abstract":"Land subsidence, marked by a decline in surface elevation, poses a significant threat to urban infrastructure and safety. Accurate subsidence information and a reliable prediction model are crucial for prevention and control. In this study, we used persistent scatterer interferometric synthetic aperture radar (PS-InSAR) technology to obtain long-term land subsidence data and analyzed subsidence characteristics in Decheng District. By integrating hydrogeological and groundwater data, we developed a three-dimensional groundwater flow and one-dimensional compaction model through numerical simulation. Furthermore, the subsidence data monitored by PS-InSAR were used to further constrain and validate the model. The evolution trend of land subsidence under different groundwater exploitation scenarios was predicted and analyzed. The results showed that from May 2017 to December 2021, the cumulative maximum subsidence in Decheng District reached −173 mm. The subsidence area is mainly concentrated in the northern area, and its subsidence center is near Qiaoyuan Town. According to the Land Subsidence Prevention and Control Plan of Dezhou City, Shandong Province (2018–2025), we set up different groundwater mining scenarios with the goal that the rate of land subsidence in the key prevention and control area is less than 35 mm/yr in 2025.The Fluid-solid coupled model prediction analysis results indicated that a 30% reduction in groundwater exploitation is reasonable.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Wenhua, Xia Chaoxu, Zhang Jie, Nie Gaozhong, Li Huayue
{"title":"Seismic risk assessment based on residential building stock and field survey results: a case study of 3 cities in Shanxi Province","authors":"Qi Wenhua, Xia Chaoxu, Zhang Jie, Nie Gaozhong, Li Huayue","doi":"10.3389/feart.2024.1424382","DOIUrl":"https://doi.org/10.3389/feart.2024.1424382","url":null,"abstract":"IntroductionBuildings that collapse or are damaged by earthquakes are responsible for the majority of earthquake-related casualties. High-precision building data are the key to improving the accuracy of risk assessments of earthquake disaster loss. Many countries and regions have also proposed varying regional building exposure models, but most of these models are still based on administrative-level (city or county) statistical data; furthermore, they cannot accurately reflect the differences among buildings in different towns or villages.MethodsAlthough field investigation-based “township to township” methods can obtain more accurate building inventory data, considering costs and timeliness, remote sensing and other diverse data should be combined to acquire building data. Based on the field survey data of three cities in shanxi Province, combined with Global Human Settlement Layer (GHSL) data, this study is conducted on building inventory data. Data regarding the proportion of each building type and corresponding lethality level in each township are obtained based on the classification of building height, and the overall lethality level at the building level and township level is calculated on this basis.ResultsThe fitting results between the calculated results and the field survey results are good, the error is within 0.15, and the fitting <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values of Xian, Baoji and Ankang are 0.6552, 0.5788 and 0.5937, respectively. Therefore, an earthquake disaster loss risk assessment is conducted based on the building level.DiscussionThe findings indicate that the risk of casualties caused by the same building type can vary by city. Generally, the areas with high disaster loss risk in the three cities are distributed mainly in urban areas; the disaster loss risk in the newly built areas of each city is relatively low. According to the quantitative assessment results for each city, Xi’an has the highest loss risk, while Baoji and Ankang have the same loss risk. Based on the method constructed in this paper, we can realize the quantitative assessment of earthquake disaster loss risk at the building level to better target pre-earthquake emergency preparation and post-earthquake auxiliary decision-making.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"3 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on fatigue characteristics of red sandstone under extremely high stress in the hydro-chemical environment","authors":"Tao Peng, Dongxing Ren, Fanmin He, Binjia Li, Fei Wu, Hanbing Zhou","doi":"10.3389/feart.2024.1453080","DOIUrl":"https://doi.org/10.3389/feart.2024.1453080","url":null,"abstract":"To study the failure of red sandstone under extremely high stress during the service life of tunnels, an in-depth study was conducted on the mechanical properties of red sandstone under uniaxial loading and cyclic loading and unloading processes at different pH values using the AG-250kNIS electronic precision material testing machine and MTS815 mechanical testing machine. The results show that as the acidity and alkalinity increase, the peak stress under uniaxial loading decreases and the axial strain increases,The peak stress at failure is 9.40, 12.37, 7.18, and 5.36 MPa, respectively, accounting for 74.19%, 68.91%, 40.38%, and 36.21% of the uniaxial compressive strength; The number of cycles significantly decreases during cyclic loading and unloading fatigue failure, and the stress required for sandstone failure gradually decreases. The peak strength and elastic modulus of sandstone show a decreasing trend, indicating that the hydrochemical environment plays an accelerating role in rock degradation. During the cyclic loading and unloading process of sandstone, there is a continuous increase in dissipated energy and finally a sudden increase, the <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msup><mml:mi>U</mml:mi><mml:mi>d</mml:mi></mml:msup><mml:mo>/</mml:mo><mml:mi>U</mml:mi></mml:mrow></mml:math></jats:inline-formula> and <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msup><mml:mi>U</mml:mi><mml:mi>e</mml:mi></mml:msup><mml:mo>/</mml:mo><mml:mi>U</mml:mi></mml:mrow></mml:math></jats:inline-formula> ratios at the peak point of sandstone in the natural state are 0.399 and 0.601, respectively, while the overall elastic energy shows an increasing trend; and a damage evolution model was established based on dissipative energy, which can better describe the degradation process of red sandstone.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"19 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data assimilation by combining ABAQUS with ensemble Kalman filter and its application to geotechnical engineering","authors":"Ding Wang, Chang Wang, Xiaogang Pu, Hui Song, Jiaqi Wan, Zhonghui Cao","doi":"10.3389/feart.2024.1456186","DOIUrl":"https://doi.org/10.3389/feart.2024.1456186","url":null,"abstract":"Geological parameters of soil exhibit spatial variability. Inverse analysis allows the acquisition of accurate spatial distributions of key geological parameters, which is crucial for structural safety assessment. In this study, an ensemble Kalman filter (EnKF) is employed in the context of data assimilation. Random fields are used as the initial input ensembles for the algorithm. The present study effectively integrates the ensemble Kalman filter with the numerical simulation software ABAQUS, enabling the inversion of parameter fields under various operating conditions. An in-house Python code script is developed to control ABAQUS for finite element computations and to obtain observations at target points. During the stepwise computation process, the algorithm can utilize newly acquired observations to accelerate the convergence of the parameter field to the true field. The effectiveness of the algorithm is validated, and the method is applied to a case study of double-tunnel excavation and a stepwise excavation analysis of a three-layered slope. The impact of the number of ensemble members and the ratio of the horizontal correlation scale to the vertical correlation scale of random fields on the effectiveness of updating the parameter field have also been investigated.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"11 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on fault lateral sealing of thinly interbedded sandstone and mudstone strata based on the fine calculation method of the SGR value","authors":"Xiaowen Liu, Yuwu Zhao, Guohui Pan, Burong Bian, Xianqiang Song, Zongbao Liu, Jie Yu","doi":"10.3389/feart.2024.1459091","DOIUrl":"https://doi.org/10.3389/feart.2024.1459091","url":null,"abstract":"Terrestrial sedimentary basins are influenced by rapid changes in the clay content, resulting in significant differences in the lateral sealing capacity (shale gouge ratio, SGR) of different parts of the fault. In the present study, we used a method of setting virtual wells and using seismic inversion data to accurately calculate the SGR of faults in strata composed of interbedded sandstone and mudstone calculate the clay content of the strata and to compensate for the low level of the actual well control. Optimal well spacing was determined based on the variable clay content of the formation. The planar variation of the fault throw was characterized via seismic interpretation. We also examined the lateral sealing of faults. The Putaohua oil layer in the S14 area of the Sanzhao Sag in the Songliao Basin was chosen as an case study. Based on the calculation of fault SGR values and the oil distribution, the evaluation criteria for the fault sealing capacity were determined, and the changes in the lateral sealing capacity of the faults were analyzed. This approach accurately estimates fault SGR values and predicts the effective oil-bearing area within the fault zone. It is also suitable for evaluating the lateral sealing of faults in strata composed of interbedded sandstone and mudstone. Our findings provide an in-depth understanding of the lateral sealing of faults and can aid in further research on petroleum distribution patterns.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"38 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}